
Numerical Analysis for Machine Learning

Lorenzo Bozzoni & Luigi Pagani

Summer 2024

Introduction

These notes contain the lecture materials for the course in Numerical Analysis for Machine Learning held at Polytech-
nic University of Milan for the Academic Year 2023-2024. These notes are a reworked version of the notes originally
produced by Lorenzo Bozzoni. Some content has been removed, some added, and some has been modified. I am also
providing a link to the original notes and to the GitHub profile of the original author.

GitHub Repository of the Original Notes

GitHub of Lorenzo Bozzoni

1

https://github.com/LorenzoBozzoni/NAML_notes
https://github.com/LorenzoBozzoni

Contents

1 Row-reduced echelon form 4

2 Factorizations 4

3 Null spaces 5

4 Eigenvalues and eigenvectors 8

5 Singular Value Decomposition (SVD) 12

6 PCA 18

7 Least Squares Approximation 20

8 Matrix completion 25

9 Page Rank 26

10 Lasso Regression 28

11 Kernel Methods 29

12 Automatic Differentiation 31

13 Convolution 36

14 Discrete Fourier Transform 38

15 Optimization in Neural Networks 39
15.1 Convergence Analysis . 40
15.2 Convergence Theorem for Lipschitz Convex Functions . 41
15.3 Decreasing Condition Lemma . 43
15.4 Convergence Theorem for Smooth Functions . 43

16 Accelerated Gradient Descent 44

17 Stochastic Gradient Descent (SGD) 46
17.1 Equivalent Statements . 48
17.2 Simple convergence results for SGD . 49

18 Newton’s Method 53
18.1 Quasi-Newton method . 54
18.2 Symmetric rank 1 updates . 55
18.3 BFGS . 56

19 Cross-Entropy Function 57

20 Sigmoidal functions 60

21 Universal Approximation Theorem of NN 63
21.0.1 Theorem (Hahn-Banach) . 63
21.0.2 Lemma 1: . 63
21.0.3 Lemma 2: . 64
21.0.4 Lemma 3 . 64
21.0.5 Finite sum of continuous discriminatory function is dense . 64

21.1 Continuous Sigmoidal Functions are discriminatory. 65
21.1.1 Relu is 1-Discriminatory . 66

22 Complexity of NN 67

23 Physics Informed Neural Networks (PINNs) 67

2

24 Appendix 70

3

1 Row-reduced echelon form

Given the matrix A, defined as follow:

A =

1 4 7
2 5 8
3 6 9


we can obtain the row-reduced echelon form of A by applying the following operations:

A = CR =

1 4
2 5
3 6

[1 0 −1
0 1 2

]
where C is the matrix containing the columns of A that are linearly independent (i.e. C(A)) and R is the matrix of
the coefficients of the linear combination of the columns of A that gives the columns of C.

Let’s now consider the following matrix:

A1 =

1 4
2 5
3 6

 A⊺
1 =

[
1 2 3
4 5 6

]
What we can say about A⊺

1 column space? Is there any relationship with the column space of A1?
In order to compute its column space, we can start noticing that: a3 = 2a2 − a1. So, in general, we can say that:

dim(C(A)) = dim(C(A⊺)) = r ≤ n where n is the number of columns of A

2 Factorizations

1. A = LU or PA = LU

2. A = QR where Q is orthogonal and R is upper triangular This is an improved version of the Row-reduced
echelon form because that worked only for square matrices, while this works for any matrix.

3. Eigenvalues and eigenvectors decomposition: when S = S⊺ (symmetric matrix) we can factorize it as S = QΛQ⊺

where Λ is a diagonal matrix and Q is an orthogonal matrix (they are all squared matrices)

4. Generalization of the above: A = XΛX−1 where X is a non-orthogonal matrix

5. A = UΣV ⊺ where U and V are orthogonal matrices and Σ is a pseudo-diagonal matrix

A matrix is said to be pseudo-diagonal if it has the following form:

Σ =



σ1 0 0 0
0 σ2 0 0

0 0
. . . 0

0 0 0 σn

0 0 0 0
...

...
...

...
0 0 0 0


m rows× n columns

So it has diagonal elements for the first n rows then it has all zeros.

Orthogonal matrices

A matrix Q is orthogonal if Q⊺Q = I (i.e. Q⊺ = Q−1). This means that the columns of Q are orthonormal, i.e. they
are orthogonal and have unit norm.

The determinant of a orthogonal matrix is ±1.
Properties:

• ||Qx|| = ||x||

• ||Qx||2 = (Qx)⊺Qx = x⊺ Q⊺Q︸ ︷︷ ︸
I

x = ||x||2

The first property is particularly easy to interpret since it means that when we multiply an orthogonal matrix to a
vector, the norm of the vector norm doesn’t change. As a proof of this, we can consider the following examples:

4

Rotation

A classical rotation matrix is: [
cos(θ) −sin(θ)
sin(θ) cos(θ)

]
Reflection

The horizontal line in the figure represent a plane π while n is its normal vector of length 1. Given v to obtain w we
can use the following formula:

w = v − 2(v⊺n)n = (I − 2nn⊺)︸ ︷︷ ︸
reflection matrix

v

Moreover, R−1 = R⊺. This makes sense because if we apply the reflection matrix twice, we obtain the original vector
v, i.e. the reflection of the reflection is the starting vector.

If we didn’t have the 2 in the formula, we would obtain the projection of v on the plane π which is called orthog-
onal projection and the matrix R would be singular.

Let’s now dive a bit into the third point of the factorization list. We said that when S = S⊺ (symmetric matrix)
we can factorize it as S = QΛQ⊺ where Λ is a diagonal matrix and Q is an orthogonal matrix.

S = S⊺ = (QΛ))︸ ︷︷ ︸
Q̃

Q⊺ = Q̃Q⊺

Q̃ = q1λ1 + · · ·+ qnλn

Where the q vectors are columns and λ vectors are rows. The notation here is a bit confusing but the not matrix Q̃
is not necessarily an orthogonal matrix, only if all eigenvalues of the matrix Λ are unitary. So we can reformulate:

S = (q1λ1 + · · ·+ qnλn)Q⊺ = q1λ1q1
⊺ + · · ·+ qnλnqn

⊺

This is called spectral decomposition of matrix S and q1, . . . , qn are the eigenvectors of S while λ1, . . . , λn are the
eigenvalues of S.

Sq1 = λ1q1 = (q1λ1q1
⊺ + · · ·+ qnλnqn

⊺)q1 = λ1q1(q⊺1 q1)

All the other products are null since the vector q1 is orthogonal to all the other vectors qi for i ̸= 1 (recall that they
are eigenvectors).

3 Null spaces

Let’s consider the starting problem for a linear system of equations:

Ax = b with A ∈ Rm×n, rank(A) = r

We are going to introduce 2 more spaces other than the column ones. To do so we consider:

Ax = 0 → N(A) ≡ ker(A) = {x ∈ Rn : Ax = 0}

A⊺x = 0 → N(A⊺) ≡ ker(A⊺) = {x ∈ Rn : A⊺x = 0}
So now, adding the so called null spaces we have that:

1. C(A) ⊂ Rm and dim(C(A)) = r

2. C(A⊺) ⊂ Rn and dim(C(A⊺)) = r

3. N(A) ⊂ Rn and dim(N(A)) =?

4. N(A⊺) ⊂ Rm and dim(N(A⊺)) =?

We still do not know the dimensions of those spaces.

5

Null space cardinality

In the first lecture, we defined 4 spaces: N(A), N(A⊺), C(A), C(A⊺). For the last two we defined also their cardinality
whilst for the first ones we weren’t able to tell yet. In this lecture we are going to find those values and prove them.
In order to do so, we start from few useful properties:

1. x = 0 ∈ N(A) for any matrix A

2. if x, y ∈ N(A) =⇒ A(x + y) = 0

3. if x ∈ N(A) =⇒ αx with α ∈ R =⇒ A(αx) = 0

Consider, once again, the matrix A ∈ Rm×n, rank(A) = r ≤ n. We have seen the decomposition A = CR, where
C contains the linearly independent columns of A and R contains the coefficients that allow to recover the columns
of A starting from its independent columns. So, the matrix A can be rewritten as:

A =
[
A1 A2

]
A1 ∈ Rm×r A2 ∈ Rm×(n−r)

Where A1 contains the independent columns of A and A2 the dependent ones. Example:

A =

1 4 7
2 5 8
3 6 9

 =

1 4
2 5
3 6


︸ ︷︷ ︸

A1

[
1 0 −1
0 1 ︸︷︷︸

B

2

]

Since we have the last column of A, that is linearly dependent so it belongs to A2, we can reformulate it in this way:

A =
[
A1 A2

]
=
[
A1 A1B

]
We build a new matrix K defined as follows:

K =

[
−B
In−r

]
K ∈ Rn×(n−r) B ∈ Rr×(n−r)

AK =
[
A1 A1B

] [−B
In−r

]
= A1(−B) + A1B = 0

Where the last 0 is actually a matrix of zeros of dimension m × (n − r) because A has size m × n and K has size
n× (n− r). We have that:

AK = 0 =⇒ Aki = 0 ∀i ∈ {1, . . . , n− r}

Where ki is the i-th column of K. This means that: ki ∈ N(A) ∀i.
Now, we want to demonstrate that: Ku = 0 =⇒ u = 0. To do so, we start from expanding K from its definition:

K =

[
−B
I

]
u = 0 =⇒

[
−Bu
u

]
=

[
0
0

]
Where the two zero vectors have dimension r and n − r respectively! Considering the second row of the matrix we
get: u = 0 so all columns of K are linearly independent.

If we consider the problem (⋆) Ax = 0, we want to prove that each x that satisfy (⋆) must be a linear combination
of the columns of K.

A1x = 0 ∈ Rm =⇒ x = 0 ∈ Rr

Because A1 has linearly independent columns, i.e. has full rank.

Au = 0 ∈ Rm =⇒
[
A1 A1B

] [u1

u2

]
=
[
A1u1 + A1Bu2

]
= A1

[
u1 + Bu2

]
= 0

We can notice that the last formulation obtained in the equation has the same form as the one from where we started
the proof, so we can say that:

u1 + Bu2 = 0 =⇒ u1 = −Bu2

u =

[
−Bu2

u2

]
=

[
−B
I

]
︸ ︷︷ ︸

K

u2 = Ku2 =⇒ dim(N(A)) = n− r

6

7

4 Eigenvalues and eigenvectors

Start considering a generic square matrix n×n. We are going later to discuss even the simmetry and positive definite
properties. Here below are the vectorial and the matrix form of the eigenvalue problem:

Axi = λixi i = 1, . . . , n X−1AX = Λ

Where in the right-hand side there is a diagonal matrix Λ with the eigenvalues of A on the diagonal while the matrix
X with the eigenvectors of A as columns.

Eigenvectors of matrix power

What can we say about the eigenvectors and eigenvalues of A2?

A2xi = A(Axi) = A(λixi) = λi(Axi) = λ2
ixi

So the eigenvalues of A2 are the eigenvalues of A squared. This is valid for any power of A since this method can be
applied recursively and it is very useful when there are problems in which a matrix is iteratively multiplied many times.

Important:
Given A ∈ Rn×n full rank, then any vector v ∈ Rn can be written as a linear combination of the eigenvectors (xi) of A.

Power Method

In mathematics, the Power Method (also known as Power Iteration) is an eigenvalue algorithm designed to find the
largest eigenvalue in absolute value, λ, of a diagonalizable matrix A. This algorithm also identifies a corresponding
nonzero eigenvector v, such that Av = λv. This method is sometimes referred to as the Von Mises iteration.

Additionally, the Inverse Power Method targets the smallest eigenvalue by applying the Power Method to
A−1, and the Power Method with a Shift applies to (A− αI)−1 for α ∈ R, aiming to find the eigenvalue closest
to α.

The algorithm can also be used iteratively in a ”deflation method” to find other eigenvalues by restructuring the
matrix as follows: [

λ1 b⊤1
0 A1

]
Here, λ1 is an eigenvalue, b⊤1 is a row vector, and A1 is the submatrix for subsequent iterations. This technique
assumes distinct eigenvalues and eigenvectors for each iteration. The method’s efficacy depends on the matrix’s
ability to be reduced in this manner and may vary based on the distinctiveness and properties of the eigenvectors.

Similar matrices

Given two matrices A,B ∈ Rn×n, they are said to be similar if there exists an invertible matrix M such that
B = M−1AM . Let λ and y be an eigenvalue and corresponding eigenvector of B, respectively. Then:

M−1AM︸ ︷︷ ︸
B

y = λy =⇒ AMy = λMy

Let w = My. Then:
Aw = λw

This equation shows that w is an eigenvector of A with the same eigenvalue λ. Therefore, similar matrices share
the same eigenvalues, and their eigenvectors are related by the similarity transformation matrix M .

QR factorization

Let’s consider a matrix A ∈ Rm×n where m ≥ n and rank(A) = n (it has all independent columns). We can factorize
A in this way:

A = QR Q ∈ Rm×n R ∈ Rn×n

Where is Q is an orthogonal matrix and R is an upper triangular matrix. Since we are dealing with eigenvalues and
eigenvectors, we are now going to consider the matrix A squared with the dimension n× n.

8

QR iteration

The QR iteration is a method for finding the eigenvalues of a matrix. Let’s start with a matrix A and perform the
initial QR decomposition:

A = A(0) = Q(0)R(0)

where Q(0) is an orthogonal matrix and R(0) is an upper triangular matrix. We then update A by multiplying Q(0)T

and A(0), and then multiplying the result by Q(0):

A(1) = Q(0)⊺A(0)Q(0) = Q(1)R(1)

Iterating this procedure, we get:

A(2), . . . , A(S), where A(S) is approximately upper triangular

After S iterations, the matrix A(S) becomes approximately upper triangular. The matrices A,A(0), A(1), . . . , A(S)

are similar, so they share the same eigenvalues.
To compute the orthogonal matrix Q at each iteration, we use the Gram-Schmidt procedure. This procedure

works for both square and non-square matrices.
Let’s start with a generic matrix A:

A =

a1 . . . an


The Gram-Schmidt algorithm is iterative and is applied to the columns of A as follows:

First, normalize the first column of A to obtain q1:

q1 =
a1

||a1||

The vector q1 will have a norm of 1.
Next, subtract the projection of a2 onto q1 from a2, and normalize the result to obtain q2:

q2 = a2 − q1(q1
⊺a2) =⇒ q2 =

q2

||q2||

The new vector q2 will be orthogonal to q1 and have a norm of 1.
For the third column, subtract the projections of a3 onto q1 and q2, and normalize the result to obtain q3:

q3 = a3 − q1(q1
⊺a3)− q2(q2

⊺a3) =⇒ q3 =
q3

||q3||

Continue this process for the remaining columns of A. The resulting matrix Q will be orthogonal and orthonormal,
meaning that its columns will be orthogonal to each other and have unit norm. This orthogonality is necessary to
obtain the orthogonal matrix Q for the QR decomposition.
Let’s now continue with the factorization journey. In the introduction to types of factorizations, we mentioned that
given a square matrix A ∈ Rn×n, we have:

A = XΛX−1

where X has the eigenvectors of A as its columns, and Λ is a diagonal matrix with the eigenvalues of A on its
diagonal. Now, let’s consider the case where the matrix S is symmetric:

S ∈ Rn×n, S = S⊺

For a symmetric matrix S, we can factorize it as follows:

S = QΛQ⊺

where Q is an orthogonal matrix (i.e., Q⊺Q = QQ⊺ = I) and Λ is a diagonal matrix. The orthogonality of Q is a
direct consequence of S being symmetric. We can prove this property by considering two cases:

1. Let x and y be two eigenvectors of S such that Sx = λx and Sy = 0y. In other words, y corresponds to a zero
eigenvalue, and x corresponds to a non-zero eigenvalue. We have:

y ∈ N(S)

x ∈ C(S) = C(S⊺)

}
=⇒ x ⊥ y

9

2. Now, consider two eigenvectors x and y corresponding to different non-zero eigenvalues λ and α, respectively.
We have Sx = λx and Sy = αy. Consider the matrix (S − αI):

(S − αI)y = 0y =⇒ y ∈ N(S − αI)

(S − αI)x = (λ− α)x =⇒ x ∈ C(S − αI) = C((S − αI)⊺)

Once again, we conclude that x ⊥ y.

Another important property of symmetric matrices is that their eigenvalues are real, i.e., λi ∈ R. To prove this,
consider the eigenvalue equation:

Sx = λx =⇒ x⊺Sx = λx⊺x

Here, x represents the conjugate of the vector x. If x has complex components, those elements are conjugated;
otherwise, they remain unchanged. The product of a complex number and its conjugate always yields a real number:

(a + ib)(a− ib) = (a2 + b2) ∈ R

From the eigenvalue equation, we obtain:

λ =
x⊺Sx

x⊺x
∈ R

We can conclude that the term in the numerator is also real. This is because, for a Hermitian matrix S, which is
equal to its own conjugate transpose, the following holds:

(x∗Sx)∗ = x∗S∗x = x∗Sx

This equality implies that x∗Sx is equal to its own complex conjugate. For a scalar quantity, being equal to its own
complex conjugate means that it is real. Therefore, x∗Sx must be real. Where here the term x∗ is the complex
conjugate of x, equivalent to x⊺. This proves that the eigenvalues of a symmetric matrix are real.
In summary, symmetric matrices have two important properties:

• Their eigenvectors are orthogonal, leading to an orthogonal matrix Q in the eigendecomposition.

• Their eigenvalues are real.

Positive-definite symmetric matrices (SPD)

Properties of symmetric matrices:

i λi > 0 ∀i = 1, . . . , n

ii v⊺Sv ≥ 0 ∀v ∈ Rn, with equality if and only if v = 0

iii Leading determinants are positive.

n
n

This means that the determinant of the matrix obtained
by taking the first k rows and columns of S is positive,
∀k = 1, . . . , n.

iv Cholesky decomposition: S = B⊺B, with B upper triangular

v All pivot elements are positive in the Gaussian elimination process

10

Proof that a Symmetric matrix is Positive Definite Since x is an eigenvector and v is a generic vector, we
express v as a linear combination of the eigenvectors of S:

v = c1x1 + c2x2 + · · ·+ cnxn

Then,
(c1x1 + c2x2 + · · ·+ cnxn)⊺S(c1x1 + c2x2 + · · ·+ cnxn)

Expanding this, we get two types of components:{
c21x

⊺
1Sx1 = c21λ1∥x1∥2

c1c2x
⊺
1Sx2 = c1c2λ2x

⊺
1x2 = 0 (orthogonal)

This shows that S is positive semi-definite
This property can also be proved from iv):

S = B⊺B =⇒ v⊺(B⊺B)v = (v⊺B⊺)(Bv) = (Bv)⊺(Bv) = ||Bv||2 ≥ 0

11

5 Singular Value Decomposition (SVD)

We are going to use it for:

• Least-squares approximation by introducing the pseudo-inverse of a matrix (Moore-Penrose inverse)

• Low-rank approximation with the Eckart-Young theorem

We start from:

A ∈ Rm×n

{
m = # of samples

n = # of features

We can write:
A = UΣV ⊺

With:

• U with dimensions m×m and orthogonal

• Σ with dimensions m× n almost diagonal

• V ⊺ with dimensions n× n and orthogonal

If m > n, we can represent the matrices like this:


︸ ︷︷ ︸
m×m




︸ ︷︷ ︸
m×n

 
︸ ︷︷ ︸

n×n

What is the idea of SVD? Try to change features so variances are maximized and covariances are minimized. We
don’t want columns to be correlated.

In general: rank(A) = r < n.

AV = UΣ ⇐= V ⊺V = I ⇐= V is orthogonal

The component wise notation is:
Avi = σiui

Given that the rank of A is r:







σ1

σ2

. . .

σr

0
0 0 0 0 0
0 0 0 0 0






{
σ1, . . . , σr > 0

σr+1, . . . , σn = 0

So the first r vectors span the column space of A while for the last n−r means that vi ∈ N(A) for i = r+1, . . . , n.
If we have A⊺, the decomposition is A⊺ = (UΣV ⊺)⊺ = V Σ⊺U⊺.

Economy SVD

What we’ve seen so far is the full SVD, but it can be optimized. Here is following the compact (reduced) represen-
tation, where once again we consider m > n:


︸ ︷︷ ︸

m×n

 
︸ ︷︷ ︸

n×n

 
︸ ︷︷ ︸

n×n

12

This is caused by the fact that the last m − n rows in the central matrix are all 0 so multiply them for the last
m − n columns of the left matrix is useless. This can be furthermore optimized by having matrix dimensions:
(m× r)(r × r)(r × n) because not all σ might be different than 0 (i.e. the rank of A is r), so, in that case is useless
even to multiply the last m− r rows of the central matrix.

The SVD works for any matrix A.

Let’s suppose A is full rank n× n:

A = UΣV ⊺ =

n∑
i=1

σi uivi
⊺︸ ︷︷ ︸

rank =1

If A is not full rank but instead has rank(A)=r, the same sum is no more computed until n, but instead r.

A =

r∑
i=1

σiuivi
⊺

What happens now if we pick a certain value r̃ < r?

A = UΣV ⊺ ∼=
r̃∑

i=1

σiuivi
⊺

We obtain a rank r̃ approximation of the matrix A. The rank of the matrix is known because is the sum of r̃
matrices of rank 1. Moreover, that one, is the best approximation of rank r̃ possible, i.e.:

||A− Ã|| ≤ ||A−B|| ∀B of rank = r̃

Proof that UΣ2UT

Once again, we start from matrix A ∈ Rm×n and rank= r. We consider the new matrix A⊺A which is:

• symmetric: (A⊺A)⊺ = A⊺A

• positive definite: x⊺(A⊺A)x = (x⊺A⊺)(Ax) = (Ax)⊺(Ax) = ||Ax||2 ≥ 0

We can use the following decomposition:

A⊺A = V ΛV ⊺ =

n∑
i=1

λiviv
⊺
i

Recall that V contains the eigenvectors while Λ contains the eigenvalues. We rename λi = σ2
i . The rank of A⊺A is r.

We want to prove that if x ∈ N(A) then x ∈ N(A⊺A), to do so we proceed in both directions:

1. If we have Ax = 0 =⇒ x ∈ N(A). Is it possible to multiply both terms:

A⊺(Ax) = A⊺0 = 0 so x ∈ N(A) =⇒ x ∈ N(A⊺A)

2. We start from (A⊺A)x = 0 =⇒ x ∈ N(A⊺A). Again, we multiply:

x⊺A⊺Ax = ||Ax||2 = 0 so x ∈ N(A⊺A) =⇒ x ∈ N(A)

Let’s consider the couple of (eigenvalues, eigenvectors) = (σ2
i , vi):

A⊺Avi = σ2
i vi

component-wise−→ A⊺Avi = σ2
i vi (†)

We introduce the quantity ui =
Avi

σi
which has some characteristics:

i ui are unitary vectors:

ui
⊺ui =

(
Avi

σi

)⊺(Avi

σi

)
=

v⊺i A
⊺Avi

σ2

†
=

σ2
i v

⊺
i vi

σ2
i

= 1

The last passage of the equation is true because vi vectors are orthonormal.

13

ii ui ⊥ uj :

ui
⊺uj =

(
Avi

σi

)⊺(Avj

σj

)
=

v⊺i A
⊺Avj

σiσj

†
=

σ2
j v

⊺
i vj

σiσj
= 0

iii ui are eigenvectors of AA⊺ with eigenvalues σ2
i :

(AA⊺ui) = AA⊺

(
Avi

σi

)
= A

A⊺Avi

σi

†
= A

σ2
i vi

σi
= σ2

i

(
Avi

σi

)
= σ2

i ui

We have demonstrated that Avi = σiui and ATui = σivi a ui are orthonormal as well.

We have seen that ui =
Avi
σi

but, what happen if σi = 0?
Until now we have assumed that could not happen. A concise recap of all versions of SVD:

1. full SVD: A
(m×n)

= U
(m×m)

Σ
(m×n)

V ⊺

(n×n)

2. economy SVD: A
(m×n)

= U
(m×n)

Σ
(n×n)

V ⊺

(n×n)

3. reduced SVD: A
(m×n)

= U
(m×r)

Σ
(r×r)

V ⊺

(r×n)

4. truncated SVD approximation:
r̃∑

i=1

σiuiv
⊺
i

For the first two cases the rank of A is n, for the third is r while in the first the approximation rank is decided.

Geometrical interpretation of SVD

Matrices U and V ⊺ are orthonormal, so as mentioned in the section above, they represent rotations (or reflections),
while Σ, being a diagonal matrix, corresponds to a scaling transformation.

Since for SVD no assumptions are made on the starting matrix, this means that any matrix can be
obtained from two rotations (or reflections) and one scaling.

For any square matrix we can apply the polar decomposition:

A = QS

where Q is orthogonal and S is symmetric positive semi-definite. Why? From SVD:

A = UΣV ⊺ = (UV ⊺)︸ ︷︷ ︸
Q

(V ΣV ⊺)︸ ︷︷ ︸
S

In particular, the product of the two orthogonal matrices in the first parenthesis is always another orthogonal matrix.
In this case of decomposition, matrix A is obtained just by one rotation (or reflection) and one scaling (missing one
more rotation with respect to classic SVD). Indeed, the second parenthesis results in a symmetric positive semi-
definite matrix because V and V ⊺ are orthogonal transformations that cancel each other out, leaving only the scaling
effect from Σ.

14

Properties of SVD

i. If A is orthogonal, then σi = 1 because if A is orthogonal, then A⊤A = I.

ii. All eigenvalues of a square matrix are ≤ σ1.

Proof:
∥Ax∥ = ∥UΣV ⊤x∥ = ∥ΣV ⊤x∥ ≤ σ1∥V ⊤x∥ = σ1∥x∥

The matrix U disappears because it is a unitary matrix, and when multiplied, it does not change the magnitude
of a vector. Similarly, V ⊤ is also a unitary matrix, so ∥V ⊤x∥ = ∥x∥.
The inequality ∥ΣV ⊤x∥ ≤ σ1∥V ⊤x∥ holds because Σ is a diagonal matrix containing the singular values in
descending order, with σ1 being the largest. Multiplying ΣV ⊤x scales each element of V ⊤x by its corresponding
singular value, and the resulting vector’s norm will be less than or equal to the norm of V ⊤x scaled by σ1.

⇒ ∥Axi∥ ≤ σ1∥xi∥

If we consider ∥Axi∥ = ∥λixi∥ = |λi| · ∥xi∥, then:

|λi| · ∥xi∥ ≤ σ1∥xi∥ ⇒ |λi| ≤ σ1 ∀i

Snapshots method

During real case scenarios, we will have a certain matrix A ∈ Rm×n and it might happen that m≫ n i.e. the number
of samples is much greater than the number of features. In these cases, we can use the following trick to be more
efficient.

For the SVD we need one between AA⊺ and A⊺A. Which one is better? And why? We would have AA⊺ : (m×m)
and A⊺A : (n× n). Given m≫ n it is clear that the second one is better to start with because, being much smaller,
it will be easier to computer its eigenvalues and eigenvectors.

Matrix norms

This concept is an extension of the vector norm. Given a matrix A ∈ Rm×n, we define the matrix norm as:

• Frobenius norm: ||A||F =

√
m∑
i=1

n∑
j=1

|aij |2 =
√

Tr(A⊺A) =
√

Tr(AA⊺)

Recall that Tr(AB) = Tr(BA).

If U is orthogonal, what happen to ||AU ||2F ?

||AU ||2F = Tr((AU)⊺AU) = Tr(U⊺A⊺AU) = Tr(A⊺AUU⊺︸ ︷︷ ︸
I

) = Tr(A⊺A) = ||A||2F

This means that the Frobenius norm is invariant with respect to orthogonal transformations (†).

The Frobenius norm is also equal to

(√
r∑

i=1

σ2
i

)
where r is the rank of A.

Proof:

||A||F = ||UΣV ⊺||F
†
= ||Σ||F ≜ Tr

√
(ΣΣ⊺) =

√√√√ r∑
i=1

σ2
i

• P-norms: Recall the p-norm for vectors:

p ∈ Rn =⇒ ||p||p =

(
n∑

i=1

|pi|p
) 1

p

Given A ∈ Rm×n we can define the p-norm for that matrix as:

||A||p = sup
x∈Rn

||Ax||p
||x||p

= sup
x∈Rn, ||x||p

||Ax||p

If you choose p = 2 you get the operator norm and ||A||2 = σ1.

15

Eckart-Young theorem

Having defined the norms, we can now proceed with the proof of the Eckart-Young theorem which states:

For either || · ||F , || · ||2 we have:

||A−Ak|| ≤ ||A−B|| ∀B of rank k

where Ak =
k∑

i=1

σiuivi
⊺ i.e. is the SVD approximation of rank k of the matrix A. Depending on the chosen norm you

get:

||A−Ak|| =


σk+1 if || · ||2considered(

r∑
i=1

σ2
i

) 1
2

if || · ||F considered

There will be 2 proofs, one for each type of norm.

Proof considering || · ||F
We start from the Weyl inequality:

σi+j−1(X + Y) = σi(X) + σj(Y)

Where a generic σk(E) is the k-eiths singular value of the matrix E. We define

X = Ak −B Y = B

So we have
σi+k(A) ≤ σi(A−B) + σk+1(B)︸ ︷︷ ︸

0

The last component has value of 0 because the matrix B has rank equal to k.

||A−Ak||2F =

(
r∑

i=k+1

σ2
i (A)

) shift
↓
=

(
r−k∑
i=1

σ2
i+k(A)

)
≤

(
r−k∑
i=1

σ2
i+k(A−B)

)
≤

min(m,n)∑
i=1

σ2
i+k(A−B)

 = ||A−B||2F

In particular, recall that A =
r∑

i=1

σiuiv
⊺
i and Ak =

k∑
i=1

σiuiv
⊺
i . The theorem is proved just by picking the first and

last components of the inequality written above. Note that we are allowed to switch from r − k to min(m,n) in the
last step of the derivation of the inequality, since we are bounding from above and we are allowd to add non-negative
terms on the right-hand side without affecting the inequality.

Proof considering || · ||2
We are now going to prove the theorem with the last norm we did not use yet. Let’s consider the matrix B with
dimensions n× d and rank(B)=k. This means that:

N(B) ⊂ Rd dim(N(B)) = d− k

If we consider matrix V of the SVD decomposition of A:

Vk+1 =

v1 . . . vk+1


︸ ︷︷ ︸

k+1cols

Those are the k + 1 columns of V .

C(Vk+1) ⊂ Rd dim(C(Vk+1)) = k + 1

By adding the previous information, we have:

dim(N(B)) + dim(C(Vk+1)) = d− k + k + 1 = d + 1

Since both spaces are subset of Rd and their summed dimensions are d + 1 this means that the intersection of those
spaces is not empty.

16

N(B) C(Vk+1)

Consider w ∈ N(B)
⋂
C(Vk+1), we suppose for easyness that ||w||2 = 1.

w =

k+1∑
i=1

civi
(⋆)
= Vk+1c

k+1∑
i=1

c2i = 1

We want to measure the following quantity:

||A−B||22 = sup
||v||2=1

||(A−B)w||22︸ ︷︷ ︸
particular ||v||

≥ ||(A−B)w||22︸ ︷︷ ︸
generic ||w||

=⇒

Recall that w ∈ N(B) =⇒ Bw = 0.

=⇒ ||A−B||22 ≥ ||Aw||22 = w⊺A⊺Aw
SVD
= w⊺V Σ⊺ U⊺U︸ ︷︷ ︸

I

ΣV ⊺w =

w⊺V Σ⊺ΣV ⊺w
(⋆)
= c⊺ V ⊺

k+1V︸ ︷︷ ︸
Ik+1

Σ⊺ΣV ⊺Vk+1︸ ︷︷ ︸
Ik+1

c = c⊺Σ⊺Σc =

k+1∑
i=1

c2iσ
2
i ≥

Since singular values are ordered

≥ σ2
k+1

k+1∑
i=1

c2i︸ ︷︷ ︸ = σ2
k+1

So
||A−B||22 ≥ σ2

k+1 = ||A−Ak||22
And, erasing the squares:

||A−B||22 ≥ σk+1 = ||A−Ak||2
Where Ak is the rank k truncated SVD approximation, therefore

||A−Ak||2 ≤ ||A−B||2 ∀B of rank k

17

6 PCA

Here is a first real-world application of the SVD. PCA has the same aim as SVD i.e. find a way of projecting the
dataset in a new space where variances are maximized and covariances are minimized.

We start from A ∈ Rn×d and we follow these points:

i Center the matrix A
Ā is the mean centered with respect to columns while H is called the centering matrix and is obtained as follows:

H = In −
1

n
1n1

⊺
n

Where 1n is the vector of dimension n containing all ones. The centered matrix is obtained:

Ā = HA

ii Build the covariance matrix

S =
Ā⊺Ā

n− 1

Where the denominator is n−1 is because we want an unbiased estimator and it’s not n because we have already
taken 1 degree of freedom by centering the matrix. The covariance matrix is semidefinite positive so we can use
eigenvalues and eigenvectors decomposition.

SV = V D =⇒ V DV ⊺, D = V ⊺SV

If you order the eigenvalues in decreasing order the corresponding eigenvectors are called principal components.
To notice the relationship between SVD and PCA we can write:

S =
1

n− 1
Ā⊺Ā =

1

n− 1
V Σ⊺U⊺UΣV ⊺ =

1

n− 1
V Σ2V ⊺

D =
1

n− 1
Σ2 =⇒ λk =

σ2
k

n− 1

PCA is SVD applied to a particular matrix.

Choose rank of truncated SVD

When using truncated SVD, how to choose the rank k? One possibility is to use k such that a predefined percentage
of the variance is retained. Another idea starts from:

A = Atrue + γAnoise

Where:

• A: is out dataset

• Atrue: is the underlying low-rank representation of our data

• γ: magnitude of the noise

• Anoise: is a gaussian noise with 0 mean and unitary variance

By defining τ as threshold we have that if sigmai > τ we are picking Atrue. There are two cases:

• γ is known, i.e. we know the magnitude of the noise:

– if A ∈ Rn×n (square) then τ =
4√
3
γ
√
n

– if A ∈ Rm×n we have two more cases:

∗ if n≪ m =⇒ τ = λ(β) where β =
n

m
and λ is the following function:

λ(β) =

√
2(β + 1) +

8β

(β + 1) +
√

(β2 + 14β + 1))

18

∗ if m ≪ n =⇒ τ = λ(β) where β =
m

n
so it’s equal as before but in this case the numerator and

denumerator of β are swapped.

• γ is unknown. We define τ as follows:

τ = ω(β)σmed ω(β) =
λ(β)

µβ

In which σmed is the median of the singular values and µβ is the median of the Marcenko-Pastur distribution.
λ(β) is the same function as before. In particular:

µβ =

∫ µβ

(1−β)2

√
((1−

√
β)2 − t)(t− (1−

√
β)2)

2πt
dt =

1

2

Randomized SVD

Randomized SVD is a faster and more efficient way to compute the truncated SVD, especially for large matrices.
The key idea is to project the original matrix onto a lower-dimensional subspace using a random matrix, and then
perform the SVD on the reduced matrix. The steps are as follows:

1. Given an input matrix A ∈ Rm×n and a target rank k, generate a random matrix Ω ∈ Rn×k whose entries are
independent and identically distributed Gaussian random variables with zero mean and unit variance.

2. Compute the matrix product Y = AΩ ∈ Rm×k, which projects the columns of A onto a k-dimensional subspace.

3. Compute the QR decomposition of Y : Y = QR, where Q ∈ Rm×k has orthonormal columns and R ∈ Rk×k is
upper triangular.

4. Form the matrix B = QTA ∈ Rk×n, which is a low-rank approximation of A.

5. Compute the SVD of the small matrix B: B = ŨΣV T , where Ũ ∈ Rk×k, Σ ∈ Rk×k, and V ∈ Rn×k.

6. Form the matrix U = QŨ ∈ Rm×k, which contains the left singular vectors of A.

The resulting matrices U , Σ, and V form a rank-k approximation of the SVD of A: A ≈ UΣV T . The approxima-
tion error depends on the choice of the target rank k and the quality of the random projection. In practice, the error
can be controlled by oversampling, i.e., choosing a larger value for k and then truncating the SVD to the desired
rank.

The main advantage of randomized SVD is its computational efficiency. The algorithm requires only a few passes
over the input matrix A and avoids the expensive computation of the full SVD. This makes it particularly well-suited
for large-scale problems where the full SVD is infeasible or prohibitively expensive.

19

7 Least Squares Approximation

Consider the following setup with n > p:

• X ∈ Rn×p: feature matrix with n samples and p features, where rank(X) = p

• y ∈ Rn: label vector for each sample

The feature matrix X can be written as:

X =


x⊺
1

x⊺
2

...
x⊺
n


where xj is the j-th column of X.

Given a new sample x̃, we aim to predict its corresponding label ỹ using the information from the training set.
We can use a linear model:

ỹ = x̃⊺w, w ∈ Rp

Since y ̸= Xw in general, we use the approximation ŷ = Xw. Thus, ŷ ∈ C(X), while y /∈ C(X) in general.
The prediction error for the i-th sample is given by:

ri(w) = yi − ŷi

The goal is to minimize the squared ℓ2-norm of the residual vector r(w):

ŵ = arg min
w

||r(w)||22

There are two approaches to solve this problem:

1. Geometrical interpretation

2. Optimization procedures

Geometrical Interpretation

• The plane represents the space of predictions C(X), spanned by the column vectors of X.

• y is the label vector to be predicted.

• ŷ = Xβ̂ is the projection of y onto C(X).

• r(w) = ϵ is the residual vector, representing the error between the predicted and actual labels.

For any y ∈ C(X) different from ŷ, with residuals r = y − y and r̂ = y − ŷ, we have:

||r̂||2 ≤ ||r||2

20

This is because r̂ is the orthogonal projection of y onto C(X), and the orthogonal projection is the closest point to
y in the subspace C(X).

Consequently, we have:
x⊺
j r̂ = 0, j = 1, . . . , p

The residual vector r̂ is orthogonal to each column vector of the feature matrix X, meaning it is perpendicular to
the subspace spanned by the columns of X. In matrix form:

X⊺r̂ = 0 =⇒ X⊺(y − ŷ) = 0 =⇒ X⊺(y −Xŵ) = 0 =⇒ X⊺y = X⊺Xŵ

If X is full rank, then X⊺X is also full rank and invertible. Thus, we can find ŵ as:

ŵ = (X⊺X)−1X⊺y

Optimization Perspective

We can solve the problem using optimization techniques:

ŵ = arg min
w
||r(w)||22 = arg min

w
||y −Xw||22 = arg min

w
(y −Xw)⊺(y −Xw)

= arg min
w

[
y⊺y − 2y⊺Xw + w⊺X⊺Xw

]
= arg min

w
F (w)

F (w) is a quadratic functional. If X is full rank, then X⊺X is positive definite, implying that the functional is
strictly convex and has a unique minimum.

Setting the gradient to zero:
∇wF (w) = −2X⊺y + 2X⊺Xw = 0

leads to the same solution as the geometrical interpretation.
We have obtained:

ŵ = (X⊺X)−1X⊺y =⇒ ŷ = X(X⊺X)−1X⊺︸ ︷︷ ︸
Px

y

The matrix Px dimension is given by the product of: (n× p)(p× p)(p× n) = (n× n) and has this properties:

• Px = P 2
x

• Px is a projection matrix

Let’s consider U an orthogonal (U⊺U = I) matrix that contains the basis for C(X) this means that C(X) = C(U).
We can write:

ŷ = Xŵ = Uw̃

So this basically means that the predicted value of y still a projection on a plane but this time the plane is spanned
by the columns of U and not by the columns of X. By substituting last equation in the minimization method for
least squares we have:

w̃ = arg min
w
||y − Uw||22 =⇒ ŷ = Uw̃ = U(U⊺U)−1U⊺y = UU⊺y

This formulation is possible because this time in the parenthesis we have an orthogonal matrix and this means that
(U⊺U)−1 = U⊺U = I. In general UU⊺ ̸= I because it might be rectangular (while U⊺U is always square).

Ridge regression

This method will help us in preventing the problem mentioned just before. We start from the definition of the weight
vector for linear model explicited for the optimization method of the Least Squares:

ŵLS = arg min
w
||y −Xw||22 + λ||w||22︸ ︷︷ ︸

f(w)

In particular we have added a term.

f(w) = y⊺y − 2w⊺Xy + w⊺X⊺Xw + λw⊺w

21

We can now compute the gradient of this function:

∇w(f(w)) = −2X⊺y + 2X⊺Xw + 2λw = 0

X⊺y = (X⊺X + λI)w

ŵR = (X⊺X + λI)−1X⊺y

It’s easy to notice that if λ = 0 we get the Least Squares solution. If λ > 0 we will have a different solution. We can
now compute the SVD of X:

ŵR = (V Σ⊺ U⊺U︸ ︷︷ ︸
I

ΣV ⊺ + λV V ⊺︸ ︷︷ ︸
I

)−1V Σ⊺U⊺y

= [V (Σ⊺Σ + λI)V ⊺]
−1

V Σ⊺U⊺y

= V (Σ⊺Σ + λI)−1Σ⊺︸ ︷︷ ︸
M

U⊺y

Where

M =



σ1

σ2
1 + λ

0 . . . 0 0 . . . 0

0
σ2

σ2
2 + λ

. . . 0 0 . . . 0

...
...

. . .
...

...
. . .

...

0 0 . . .
σp

σ2
p + λ

0 . . . 0


• if σi is big compared to λ then

σi

σ2
i + λ

≈ 1

σi

• if σi is close to 0 then
σi

σ2
i + λ

≈ 0

Ridge regression addresses the problem of singular values close to zero in the matrix X by adding a regularization
term λ to the diagonal of X⊺X. This modifies the singular values in the pseudo-inverse term to σi

σ2
i+λ

. When σi is

much larger than λ, the solution remains similar to the Least Squares solution. However, when σi is close to zero,
the corresponding term in the pseudo-inverse becomes approximately zero, mitigating the issues caused by small
singular values. As λ approaches zero, the Ridge regression solution converges to the Least Squares solution. The
choice of λ depends on the desired balance between fitting the training data and regularizing the model, and is often
selected using techniques like cross-validation. If λ is very small the matrix of Σ’s is almost equal to Σ+.

ŵR = (X⊺X + λI)−1X⊺y

= (X⊺X + λI)−1X⊺(Xw∗ + ϵ)

= (X⊺X + λI)−1X⊺Xw∗ + (X⊺X + λI)−1X⊺ϵ

22

Orthogonal Least Squares

In the last lecture we have introduced the least squares method. In particular we have mentioned the linear model
for which:

ŷ = Xŵ X ∈ Rn×p ŷ ∈ Rn n ≥ p X full rank

We have obtained:

ŵ =
(
X⊤X

)−1
X⊤y =⇒ ŷ = X

(
X⊤X

)−1
X⊤︸ ︷︷ ︸

Px

y

The matrix Px dimension is given by the product of: (n× p)(p× p)(p× n) = (n× n) and has this properties: -
Px = P 2

x - Px is a projection matrix
Let’s consider U an orthogonal

(
U⊤U = I

)
matrix that contains the basis for C(X) this means that C(X) = C(U).

We can write:

ŷ = Xŵ = Uw̃

So this basically means that the predicted value of y still a projection on a plane but this time the plane is spanned
by the columns of U and not by the columns of X. By substituting last equation in the minimization method for
least squares we have:

w̃ = arg min
w
∥y − Uw∥22 =⇒ ŷ = Uw̃ = U

(
U⊤U

)−1
U⊤y = UU⊤y

This formulation is possible because this time in the parenthesis we have an orthogonal matrix and this means

that
(
U⊤U

)−1
= U⊤U = I. In general UU⊤ ̸= I because it might be rectangular (while U⊤U is always square).

How do we build the orthogonal matrix U ? We can use the Gram-Schmidt procedure, but a drawback of Gram
Schmidt is that, depending on the order chosen for the columns of X, the matrix U can be different. Moreover, the
order of vector columns of U is meaningless.
Now, we want to exploit the SVD for computing the orthogonal matrix U . We start from the SVD of X :

ŵ =
(
X⊤X

)−1
X⊤y

=
(
V Σ⊤U⊤UΣV ⊤)−1

V Σ⊤U⊤y

=
(
V Σ⊤ΣV ⊤)−1

V Σ⊤U⊤y

= V
(
Σ⊤Σ

)−1
V ⊤V︸ ︷︷ ︸

I

Σ⊤U⊤y

= V
(
Σ⊤Σ

)−1
Σ⊤︸ ︷︷ ︸

Σ+

U⊤y

= V Σ+U⊤y

= X+y

Σ+il called the pseudo-inverse of Σ.
Eventually, we have:
Let’s consider now the case in which p ≥ n and X has n linearly independent rows (before we had p linearly

independent columns). This means that we have more unknowns than equations and we would find infinite solutions
for ŵ such that ŷ = Xŵ.

The solution found before, ŵ = V Σ+U⊤y, is still valid, but now Σ+ = Σ⊤(ΣΣ⊤)−1. This means it has the same
shape as before but transposed.

Let’s consider two vectors: wwand̂wŵ:

y = Xw = Xŵ

So they both are solutions of the system of equations.
To prove that the vector ŵ = V Σ+U⊤y is the solution with the minimum norm among all solutions w of the

system y = Xw, we will use the properties of the SVD and the orthogonality of the matrices U and V .

We have that among the infinite solution, the one obtained through the psudo inverse is the on with minimal

23

norm.
For an underdetermined system y = Xw, the solution ŵ computed through the pseudoinverse has the minimum
norm among all solutions.

Let w be any solution to the underdetermined system, and ŵ be the solution computed through the pseudoinverse.
We will show that ∥ŵ∥22 ≤ ∥w∥22.

We begin by expanding ∥w∥22:

∥w∥22 = ∥w − ŵ + ŵ∥22
= (w − ŵ + ŵ)⊤(w − ŵ + ŵ)

= (w − ŵ)⊤(w − ŵ) + ŵ⊤ŵli + 2(w − ŵ)⊤ŵ

Now, we use the following properties:

1. Both w and ŵ are solutions, so Xw = Xŵ = y. This implies X(w − ŵ) = 0, meaning (w − ŵ) is in the null
space of X.

2. ŵ, being the pseudoinverse solution, is orthogonal to the null space of X. Therefore, (w − ŵ)⊤ŵ = 0.

Using these properties, we can simplify our expansion:

∥w∥22 = (w − ŵ)⊤(w − ŵ) + ŵ⊤w + 2(w − ŵ)⊤ŵ

= (w − ŵ)⊤(w − ŵ) + ŵ⊤ŵ + 0

= ∥w − ŵ∥22 + ∥ŵ∥22

Since ∥w − ŵ∥22 is always non-negative, we can conclude that:

∥w∥22 ≥ ∥ŵ∥22
This inequality holds for any solution w. Therefore, ŵ has the minimum norm among all solutions of the system

y = Xw.

24

8 Matrix completion

We start from
X ∈ Rn×p rank(X) = r ≪ min(n, p)

We know only partially X, we know Xi,jfor(i, j) ∈ Ω(i, j) ∈ Ω.
Matrix completion is a method for filling missing values. If we had full rank matrix we would have indepen-

dent columns so we would not be able to retrieve/obtain missing values. Being low rank, in this sense, helps us
accomplishing this goal.

Ideal estimator X̂ = arg min
z∈Rn×p

[rank(z)]

subject to X̂ij = Xij(i, j) ∈ Ω

This formulation is computationally unfeasible as the object function is non-convex. Amongst all possible solutions,
we are searching for the one with minimal rank. The problem is that this is a non-convex optimization problem
which requires a lot of computational power to be solved.

Practical estimator

We are going to use the Nuclear norm: || · ||∗ =
min(n,p)∑

i=1

σi.

The idea is that, instead of minimizing the rank, we minimize the norm since, when performing the SVD, the
number of non-zero singular values is equal to the rank of the matrix.X̂ = arg min

z∈Rn×p

||z||∗

subject to X̂ij = Xij(i, j) ∈ Ω

This new formulation is convex optimization problem. How are we going to solve this problem? With the SVT
(Singular Value Threshold). Here is the algorithm:

• Initialize X̂ = zeros(n, p)

• Set X̂ij = Xij for (i, j) ∈ Ω

• For k = 1, 2, . . . , N

– X̂old = X̂

– [U,Σ, V ⊺] = svd(X̂)

– Σ→ Σ̂

{
σ̂i = σi if σi > τ

σ̂i = 0 otherwise

– X̂ = U Σ̂V ⊺

– X̂ij = Xij for (i, j) ∈ Ω

• ||X̂ −Xold|| < ϵ

The constant τ is imposing some sort of thresholding on the acceptance of singular values. This is an example of
non-monothone algorithm because after the reduction of rank with the condition on sigmas, we override some value
of the matrix to the one contained in Ω. Is it proved that for a large enough index k the algorithm converge to the
solution.

25

9 Page Rank

Consider four websites where the directed links between them represent navigational paths from one website to
another. The interaction of these websites can be visualized through a directed graph as follows:

1 2

3 4

The process of web surfing can be described as a series
of random walks on this graph, leading to a steady state
where πi represents the probability of being on the i-th
website. The probability vector π ∈ R4 for four websites
is as follows:

We represent the linkage of these websites with an Adjacency Matrix:

Ã =


0 1 0 0
1 0 1 1
1 0 0 0
1 0 1 0


Ãij = 1 if there is a link from i to j, and 0 otherwise. This matrix is then normalized so that each column sums to
1, resulting in:

A =


0 1/3 1/2 1/2

1/3 0 1/3 1/2
1/3 0 0 0
1/3 1/3 1/2 0


Multiplying this matrix A by the canonical basis vector e3 =

[
0 0 1 0

]⊺
demonstrates the transition proba-

bilities from the third website:

Ae3 =


1/2
1/2
0

1/2


Steady State Analysis

The steady state is reached when the state vector π satisfies:

Aπ = π

Here, π is an eigenvector of A associated with the eigenvalue 1. Using the Perron-Frobenius theorem for positive
matrices (matrices with all non-negative coefficients), we know the largest eigenvalue λ1 = 1.

Convergence via Power Method

The power method is employed to compute the eigenvector associated to the biggest eigenvalue in absolute value.
The algorithm proceeds as follows:

• Start with π(0) normalized to 1.

• For k = 1, 2, . . .:

π(k) =
Aπ(k−1)

||Aπ(k−1)||

• Stop when ∥π(k) − π(k−1)∥ < ϵ.

As k →∞, the method converges, isolating the principal eigenvector due to the dominance of λ1. This iterative
process approximates π, estimating the long-term probabilities of visiting each website based on their interconnect-
edness. The closer the sub-dominant eigenvalues are to λ1, the slower the convergence.

This means that, the steady state is the eigenvector of the matrix A with eigenvalue 1. The matrix A is positive
(not positive-definite) i.e. it has all non-negative cohefficients. A positive matrix is denoted with A > 0. From
Perron-Frobenius theory we know that λ1 = 1 is the largest eigenvalue.

λ1 = 1 > λ2 > λ3 > · · · > λn λi ̸= 0

26

As mentioned in a previous lecture, we can use the power method in order to retrieve the largest eigenvalue. In
particular, we start from:

π(0) with ||π(0)|| = 1

Then, for k = 1, 2, . . .

π(k) =
Aπ(k−1)

||Aπ(k−1)||

if ||π(k) − π(k−1)|| < ϵ then stop

Obviously, ϵ represents a tolerance value. As we can see, there is an recursive definition in a sense that, at each
iteration, the same operation is made on the same variable. For example:

π(1) =
Aπ(0)

||Aπ(0)||
π(2) =

Aπ(1)

||Aπ(1)||
=

A2π()

||A2π(k−1)||

So, iterating k times:

π(k) =
Akπ(0)

||Akπ(0)||
Since in A there are no columns that are completely equal to 0, the matrix can be diagonalized. This implies that
there are some vi, i = 1, . . . , n that can used as a basis for the space. In particular we can write:

π(0) =

n∑
i=1

αivi

We want to plug this expression in the previous equation (power method). Before, notice that, Avi = λvi because
vi are the vectors which diagonalize A so the ones such that A = V ΛV ⊺. The numerator of π(k) can be written as:

Akπ(0) = α1λ
k
1

(
v1 +

n∑
i=2

αi

α1

(
λi

λ1

)k

vi

)

Proof:

Akπ(0) = V ΛkV −1 (α1v1 + · · ·+ αnvn)

= V Λk (α1e1 + · · ·+ αnen)

= V
(
α1λ

k
1e1 + · · ·+ αnλ

k
nen
)

= α1λ
k
1v1 + · · ·+ αnλ

k
nvn

= α1λ
k
1

(
v1 +

α2

α1

(
λ2

λ1

)k

v2 + · · ·+ αn

α1

(
λn

λ1

)k

vn

)

If k → ∞ then

(
λi

λ1

)k

→ 0 because λ1 > λi for i = 2, . . . , n . So, the only remaining term is v1 which is the

eigenvector with the largest eigenvalue. So what we have just done is the proof of the convergence of the power
method.The closer are the eigenvalues to λ1 the slower is the convergence.

27

10 Lasso Regression

So far we have considered:

y = Xw X ∈ Rn×p and

{
Least Squares : ŵLS

Ridge Regression : ŵRR

}
w ∈ Rp dense vector, i.e. not many zeros

We are going to see a method which obtain a vector ŵ with many zeros, as sparse as possible. We want to consider
this model:

y = Xw X ∈ Rn×p p > n

We have said that the system is undetermined since it has infinite solutions. Suppose to have 2 features and 1 sample.

X =
[
2 3

]
y =

[
1
]

And so:

1 =
[
2 3

] [w1

w2

]
=⇒ 1 = 2w1 + 3w2 ← line

As mentioned in a previous lecture, we want to find the minimum length solution so we can plot the line found before
and the circles that represents the l2-norm distance.

On the right-hand side it is represented the equivalent plot but with the l1-norm. We can see that the solution on
the right has one coordinate (are features!) that is equal to zero. This is true in general, i.e. we will obtain sparser
solution using the l1-norm rather than the l2-norm.
With L1-norm it’s still a convex optimization problem and

F (w) = ||Xw − y||22 + λ||w||1

This model is implemented by Lasso (Least Absolute Shrinkage and Selection Operator) and achieve both the
shortest distance solution and the selection of some features.

This is important because by reducing the number of features, we increase the interpretability of the model.

There is also the Elastic Net which combines both Lasso and Ridge:

F (w) = ||Xw − y||22 + λ1||w||1 + λ2||w||22

28

11 Kernel Methods

Kernel methods extend linear models to capture non-linear relationships without explicitly computing high-dimensional
feature representations.

Feature Maps

We start by transforming our original feature vector xx using a feature map ϕ(x):

ϕ(x) =


x1

x2

x2
1

x2
2

x1x2

 ∈ Rd (d > p typically)

This leads to a new model representation:
ŷi = ϕ(xi)

⊺w

The Kernel Trick

To avoid computing large vectors, we introduce the kernel trick:

K(xi, xj) = ϕ(xi)
⊺ϕ(xj)

Common kernel functions include:

• Polynomial of degree q: K(xi, xj) = (x⊺
i xj)

q

• Polynomial of degree up to q: K(xi, xj) = (x⊺
i xj + 1)q

• Gaussian RBF: K(xi, xj) = exp(− ||xi−xj ||
2
2

2σ2)

Kernel Ridge Regression

In kernel ridge regression, we compute:
α = (K + λI)−1y

The matrix K associated to Kernel has entries

Ki,j = K(xi, xj) = Φ(xi)
T Φ(xj)

α = (ΦT Φ + λI)−1y = (K + λI)−1y

y = wT Φ(x) = (ΦTα)T Φ(x) = αT Φ(x)

=

n∑
i=1

αi(Φ(xi)
T Φ(x))

=

n∑
i=1

αiK(x, xi)

NB notice that in this way, α can be computed without the feature map (costly), but only using the Kernel
function (cheap!). K could be singular, the term λI avoids the singular case This technique is called Kernel trick.

29

Representer Theorem

Let ŷi = wT Φ(xi) with fixed feature map Φ and w is learned from data {xi, yi}. Furthermore, let L(y, ŷ) be any loss
function and h : [0,+∞)→ R a strictly monotonically increasing function. Then each minimizer w of

1

n

n∑
i=1

L(yi, w
T Φ(xi)) + h(∥w∥2)

can be written as w = ΦTα, where α is n-dimensional.
NB: A loss function is a function that maps a single sample to a real number

L(ϕ, ŷ(xi))

then the cost function concerns the entire sample set

1

n

n∑
i=1

L(yi, ŷ(xi))

Support Vector Regression

Support Vector Regression (SVR) employs an ϵ-insensitive loss function, which ignores errors within a certain thresh-
old ϵ. The loss function is defined as:

L(yi, ŷ) = max(0, |yi − ŷ| − ϵ)

=

{
0 if |yi − ŷ| ≤ ϵ,

|yi − ŷ| − ϵ otherwise.

Here, ϵ is a user-defined parameter that sets the width of the tube within which no penalty is given for errors.
The objective in SVR is to find the weight vector w that minimizes the following primal formulation:

ŵ = arg min
w

{
1

n

n∑
i=1

max(0, |yi − wT Φ(xi)| − ϵ) + λ∥w∥2
}

This formulation includes an L2 regularization term controlled by λ, which helps prevent overfitting by penalizing
the magnitude of the coefficients.

Although a direct dual formulation similar to the linear case is challenging to derive in the non-linear scenario, the
dual problem in SVR can be formulated using kernel functions. The predicted value ŷ(x) using the dual coefficients
is expressed as:

ŷ(x̃) = α̂TK(X, x̃)

Where K is the kernel function, encapsulating the inner product of vectors in a transformed feature space.
The dual coefficients α are obtained by solving:

α̂ = arg min
α

1

2
αTK(X,X)α− αT y + ϵ∥α∥1

subject to the constraint |αi| ≤ 1
2nλ , which ensures that the solution does not overfit and that the influence of each

data point is limited.

30

12 Automatic Differentiation

In this section, we will explore different methods for computing the derivative of a function:

Method PROS CONS

Manual computation Exact, useful for proofs
Prone to error, time-consuming for complex
functions

Numerical differentiation Easy to program
Issues with floating point precision*, compu-
tationally expensive

Symbolic differentiation Exact, good for proofs
Expression swelling**, cannot handle condi-
tions or loops

Automatic differentiation (AD) Exact, fast Complex to implement

Automatic Differentiation

Automatic differentiation (AD) is a set of techniques to evaluate the derivative of a function specified by a computer
program. Unlike symbolic differentiation, which manipulates mathematical expressions to find the derivative, and
numerical differentiation, which approximates the derivative using finite differences, AD computes the derivative
using the actual operations performed in the function, ensuring exact results up to machine precision.

AD exploits the fact that any program, no matter how complex, executes a sequence of elementary arithmetic
operations (addition, subtraction, multiplication, division) and elementary functions (exp, log, sin, cos, etc.). By
applying the chain rule of calculus repeatedly to these operations, AD computes the derivatives efficiently and
accurately.

An Example

Consider the following function of 3 variables:

f(x) = (x1x2 sinx3 + ex1x2) /x3

x4 = x1 ∗ x2

x5 = sinx3

x6 = ex4

x7 = x4 ∗ x5

x8 = x6 + x7

x9 = x8/x3

The Forward Mode

An Overview

Forward-mode autodiff is neither numerical differentiation nor symbolic differentiation, but in some ways, it is their
love child. It relies on dual numbers, which are (weird but fascinating) numbers of the form a + bϵ where a and b
are real numbers and ϵ is an infinitesimal number such that ϵ2 = 0 (but ϵ ̸= 0). You can think of the dual number
42 + 24ϵ as something akin to 42.0000 . . . 000024 with an infinite number of 0s (but of course, this is simplified just
to give you some idea of what dual numbers are). A dual number is represented in memory as a pair of floats. For
example, 42 + 24ϵ is represented by the pair (42.0, 24.0).

Dual numbers can be added, multiplied, and so on, as shown in the equations:

λ(a + bϵ) = λa + λbϵ

(a + bϵ) + (c + dϵ) = (a + c) + (b + d)ϵ

(a + bϵ)× (c + dϵ) = ac + (ad + bc)ϵ + bdϵ2 = ac + (ad + bc)ϵ

Most importantly, it can be shown that h(a + bϵ) = h(a) + b× h′(a)ϵ, so computing h(a + ϵ) gives you both h(a)
and the derivative h′(a) in just one shot. The computation of the partial derivative of f(x, y) with regards to x at
x = 3 and y = 4 involves computing f(3 + ϵ, 4); this will output a dual number whose first component is equal to
f(3, 4) and whose second component is equal to ∂f

∂x (3, 4).

To compute ∂f
∂y (3, 4) we would have to go through the graph again, but this time with x = 3 and y = 4 + ϵ.

31

So forward-mode autodiff is much more accurate than numerical differentiation, but it suffers from the same
major flaw: if there were 1,000 parameters, it would require 1,000 passes through the graph to compute all the
partial derivatives. This is where reverse-mode autodiff shines: it can compute all of them in just two passes through
the graph.

More in detail

In the forward mode of automatic differentiation, we evaluate and carry forward a directional derivative of each
intermediate variable xi in a given direction p ∈ Rn, simultaneously with the evaluation of xi itself. For the
three-variable example above, we use the following notation for the directional derivative for p associated with each
variable:

Dpxi
def
= (∇xi)

T
p =

3∑
j=1

∂xi

∂xj
pj , i = 1, 2, . . . , 9

where ∇ indicates the gradient with respect to the three independent variables. Our goal is to evaluate Dpx9,
which is the same as the directional derivative ∇f(x)T p. We note immediately that initial values Dpxi for the
independent variables xi, i = 1, 2, 3, are simply the components p1, p2, p3 of p. The direction p is referred to as the
seed vector.

As soon as the value of xi at any node is known, we can find the corresponding value of Dpxi from the chain
rule. For instance, suppose we know the values of x4, Dpx4, x5, and Dpx5, and we are about to calculate x7. We
have that x7 = x4x5; that is, x7 is a function of the two variables x4 and x5, which in turn are functions of x1, x2, x3.
By applying the chain rule, we have that:

∇x7 =
∂x7

∂x4
∇x4 +

∂x7

∂x5
∇x5 = x5∇x4 + x4∇x5

By taking the inner product of both sides of this expression with p and applyingthe chain rule in the multivariate
context we obtain:

Dpx7 =
∂x7

∂x4
Dpx4 +

∂x7

∂x5
Dpx5 = x5Dpx4 + x4Dpx5

The directional derivatives Dpxi are therefore evaluated side by side with the intermediate results xi, and at the end
of the process we obtain Dpx9 = Dpf = ∇f(x)T p.

The principle of the forward mode is straightforward enough, but what of its practical implementation and compu-
tational requirements? First, we repeat that the user does not need to construct the computational graph, break
the computation down into elementary operations, or identify intermediate variables. The automatic differentiation
software should perform these tasks implicitly and automatically. Nor is it necessary to store the information xi and
Dpxi for every node of the computation graph at once (which is just as well, since this graph can be very large for
complicated functions). Once all the children of any node have been evaluated, its associated values xi and Dpxi are
not needed further and may be overwritten in storage.

The key to practical implementation is the side-by-side evaluation of xi and Dpxi. The automatic differentiation
software associates a scalar Dpw with any scalar w that appears in the evaluation code. Whenever w is used in an
arithmetic computation, the software performs an associated operation (based on the chain rule) with the gradient
vector Dpw. For instance, if w is combined in a division operation with another value y to produce a new value z,
that is,

z ← w

y

we use w, z,Dpw, and Dpy to evaluate the directional derivative Dpz as follows:

Dpz ←
1

y
Dpw −

w

y2
Dpy

To obtain the complete gradient vector, we can carry out this procedure simultaneously for the n seed vectors
p = e1, e2, . . . , en. We see that p = ej implies that Dpf = ∂f/∂xj , j = 1, 2, . . . , n. We notethat the additional cost of
evaluating f and ∇f (over the cost of evaluating f alone) may be significant. It is difficult to obtain an exact bound
on the increase in computation, since the costs of retrieving and storing the data should also be taken into account.
The storage requirements may also increase by a factor as large as n, since we now have to store n additional scalars
Dejxi, j = 1, 2, . . . , n, alongside each intermediate variable xi.

32

The Reverse Mode

An Overview

Reverse-mode autodiff is the solution implemented by TensorFlow. It first goes through the graph in the forward
direction (i.e., from the inputs to the output) to compute the value of each node. Then it does a second pass, this
time in the reverse direction (i.e., from the output to the inputs) to compute all the partial derivatives. During
the first pass, all the node values were computed, starting from x = 3 and y = 4. You can see those values at
the bottom right of each node (e.g., x × x = 9). The nodes are labeled n1 to n7 for clarity. The output node is
n7 : f(3, 4) = n7 = 42.

The idea is to gradually go down the graph, computing the partial derivative of f(x, y) with regards to each
consecutive node, until we reach the variable nodes. For this, reverse-mode autodiff relies heavily on the chain rule,
shown in the equations:

∂f

∂x
=

∂f

∂ni
× ∂ni

∂x

Since n7 is the output node, f = n7 so trivially ∂f
∂n7

= 1.
Let’s continue down the graph to n5: how much does f vary when n5 varies? The answer is:

∂f

∂n5
=

∂f

∂n7
× ∂n7

∂n5

We already know that ∂f
∂n7

= 1, so all we need is ∂n7

∂n5
. Since n7 simply performs the sum n5 + n6, we find that:

∂n7

∂n5
= 1,

∂f

∂n5
= 1× 1 = 1

Now we can proceed to node n4: how much does f vary when n4 varies? The answer is:

∂f

∂n4
=

∂f

∂n5
× ∂n5

∂n4

Since n5 = n4 × n2, we find that:
∂n5

∂n4
= n2,

∂f

∂n4
= 1× n2 = 4

The process continues until we reach the bottom of the graph. At that point, we will have calculated all the
partial derivatives of f(x, y) at the point x = 3 and y = 4. In this example, we find ∂f

∂x = 24 and ∂f
∂y = 10. Sounds

about right!
Reverse-mode autodiff is a very powerful and accurate technique, especially when there are many inputs and few

outputs, since it requires only one forward pass plus one reverse pass per output to compute all the partial derivatives
for all outputs with regards to all the inputs. Most importantly, it can deal with functions defined by arbitrary code.
It can also handle functions that are not entirely differentiable,

More in detail

The reverse mode of automatic differentiation does not perform function and gradient evaluations concurrently.
Instead, after the evaluation of f is complete, it recovers the partial derivatives of f with respect to each variable
xi-independent and intermediate variables alike-by performing a reverse sweep of the computational graph. At the
conclusion of this process, the gradient vector ∇f can be assembled from the partial derivatives ∂f/∂xi with respect
to the independent variables xi, i = 1, 2, . . . , n.

Instead of the gradient vectors Dpxi used in the forward mode, the reverse mode associates a scalar variable x̄i

with each node in the graph; information about the partial derivative ∂f/∂xi is accumulated in x̄i during the reverse
sweep. The x̄i are sometimes called the adjoint variables, and we initialize their values to zero, with the exception
of the rightmost node in the graph (node N , say), for which we set x̄N = 1. This choice makes sense because xN

contains the final function value f , so we have ∂f/ ∂xN = 1.
The reverse sweep makes use of the following observation, which is again based on the chain rule: For any node

i, the partial derivative ∂f/∂xi can be built up from the partial derivatives ∂f/∂xj corresponding to its child nodes
j according to the following formula:

∂f

∂xi
=

∑
j a child of i

∂f

∂xj

∂xj

∂xi

For each node i, we add the right-hand-side term to x̄i as soon as it becomes known; that is, we perform the
operation

33

x̄i+ =
∂f

∂xj

∂xj

∂xi

(In this expression and the ones below, we use the arithmetic notation of the programming language C, in which
x+ = a means x← x+a.) Once contributions have been received from all the child nodes of i, we have x̄i = ∂f/∂xi,
so we declare node i to be ”finalized.” At this point, node i is ready to contribute a term to the summation for
each of its parent nodes. The process continues in this fashion until all nodes are finalized. Note that for derivative
evaluation, the flow of computation in the graph is from children to parents-the opposite direction to the computation
flow for function evaluation.

During the reverse sweep, we work with numerical values, not with formulae or computer code involving the
variables xi or the partial derivatives ∂f/∂xi. During the forward sweep-the evaluation of f -we not only calculate
the values of each variable xi, but we also calculate and store the numerical values of each partial derivative ∂xj/∂xi.
Each of these partial derivatives is associated with a particular arc of the computational graph. The numerical values
of ∂xj/∂xi computed during the forward sweep are then used during the reverse sweep.

The main appeal of the reverse mode is that its computational complexity is low for the scalar functions f : Rn →
R discussed here. The extra arithmetic associated with the gradient computation is at most four or five times the
arithmetic needed to evaluate the function alone.
As we noted above, the forward mode may require up to n times more arithmetic to compute the gradient ∇f than
to compute the function f alone, making it appear uncompetitive with the reverse mode. When we consider vector
functions r : Rn → Rm, the relative costs of the forward and reverse modes become more similar as m increases, as
we describe in the next section.
An apparent drawback of the reverse mode is the need to store the entire computational graph, which is needed for
the reverse sweep. In principle, storage of this graph is not too difficult to implement. Whenever an elementary
operation is performed, we can form and store a new node containing the intermediate result, pointers to the (one
or two) parent nodes, and the partial derivatives associated with these arcs. During the reverse sweep, the nodes
can be read in the reverse order to that in which they were written, giving a particularly simple access pattern.
Unfortunately, the computational graph may require a huge amount of storage.

Matrix-Free Jacobian-Vector Product with Forward Mode Automatic Differentiation

Forward mode automatic differentiation (AD) provides a very efficient and matrix-free way of computing Jacobian–
vector products. This method utilizes the concept of a seed vector to guide the derivative computations. The seed
vector ẋ is initialized with r, defining the direction of differentiation right at the start:

Jfr =


∂y1

∂x1
· · · ∂y1

∂xn

...
. . .

...
∂ym

∂x1
· · · ∂ym

∂xn


r1...
rn

 ,

This approach enables the computation of the Jacobian–vector product in just one forward pass of the AD
process by efficiently propagating changes along the direction specified by the seed vector r. As a special case, when
f : Rn → R, we can obtain the directional derivative along a given vector r as:

∇f · r

This is achieved by starting the AD computation with the values ẋ = r, directly obtaining the rate of change of
f in the direction of r.

Forward mode AD is efficient and straightforward for functions f : R → Rm, as all the derivatives dyi

dx can be
computed with just one forward pass. Conversely, in the other extreme of f : Rn → R, forward mode AD requires n
evaluations to compute the gradient

∇f =

(
∂y

∂x1
, . . . ,

∂y

∂xn

)
,

which also corresponds to a 1 × n Jacobian matrix that is built one column at a time with the forward mode in n
evaluations.

Dual-numbers

They are similar to complex numbers.

a + bϵ with a, b ∈ R and ϵ ̸= 0, ϵ2 = 0

34

Where a is the real part and b is the dual part. Basic operations with dual numbers:

(a + bϵ) + (c + dϵ) = (a + c) + (b + d)ϵ

(a + bϵ)(c + dϵ) = ac + (ad + bc)ϵ

Why this algebra is useful to our purposes? Consider the generic function f , we want to evaluate it with a dual
number:

f(a + bϵ) = f(a) + f ′(a)bϵ +
f ′′(a)

2
b2ϵ2 + . . .︸ ︷︷ ︸
0

We have used the Taylor expansion, the last terms are zero because of ϵ2. Notice that, if we have unitary dual part
(b = 1), we obtain the derivative of f in a. This is the key point of the dual numbers:

b = 1 =⇒ a + bϵ = a + ϵ =⇒ f(a + ϵ) = f(a) + f ′(a)ϵ

The last term is again a dual number in which the real part is the value of the function in a and the dual part is the
derivative of the function in a.

Let’s check if the derivative properties are actually respected, suppose to have f(x) = g(x)h(x):

f(a + ϵ) = g(a + ϵ)h(a + ϵ)

= [g(a) + g′(a)ϵ][h(a) + h′(a)ϵ]

= g(a)h(a) + g(a)h′(a)ϵ + g′(a)h(a)ϵ + g′(a)h′(a)ϵ2

= g(a)h(a) + [g(a)h′(a) + g′(a)h(a)]︸ ︷︷ ︸
der. of the product

ϵ

Or f(x) = g(h(x)):

f(a + ϵ) = g(h(a + ϵ))

= g(h(a) + h′(a)ϵ)

= g(h(a))︸ ︷︷ ︸
f(a)

+ g′(h(a))h′(a)ϵ︸ ︷︷ ︸
f ′(a)ϵ

Usage of Automatic Differentiation

Consider a function f : Rn → R. Automatic Differentiation (AD) can efficiently compute the Jacobian matrix J using
either Forward Mode (FM) or Backward Mode (BM). In FM, the operation count is approximately n× c× ops(f),
where c ≈ 2.5. In BM, it is m × c × ops(f), with m and n representing the dimensions of the output and input
spaces, respectively. FM computes Jr by setting ẋ = r, which represents the product of the Jacobian with a vector.
Conversely, BM computes J⊤r by setting ȳ = r, which corresponds to the transpose Jacobian-vector product. BM
necessitates storing all intermediate values from the forward computation for use during the backward computation.

We can also devise schemes based on the reverse mode for calculating Hessian-vector products ∇2f(x)q, or the
full Hessian ∇2f(x). A scheme for obtaining ∇2f(x)q proceeds as follows. We start by using the forward mode to
evaluate both f and∇f(x)T q, by accumulating the two variables xi and Dqxi during the forward sweep in the manner
described above. We then apply the reverse mode in the normal fashion to the computed function ∇f(x)T q. At the
end of the reverse sweep, the nodes i = 1, 2, . . . , n of the computational graph that correspond to the independent
variables will contain

∂

∂xi
(∇f(x)T q) = [∇2f(x)q]i, i = 1, 2, . . . , n.

The number of arithmetic operations required to obtain ∇2f(x)q by this procedure increases by only a modest
factor, independent of n, over the evaluation of f alone. By the usual analysis for the forward mode, we see that the
computation of f and ∇f(x)T q jointly requires a small multiple of the operation count for f alone, while the reverse
sweep introduces a further factor of at most 5. The total increase factor is approximately 12 over the operation count
for f alone.

For more complex requirements, such as when the full Hessian ∇2f(x) is needed or when ∇2f(x)q must be
computed, a combination of FM and BM is employed. The forward mode evaluates both f and ∇f(x)T q, and
the reverse mode subsequently computes ∇2f(x)q. This procedure increases the operation count by a factor of
approximately 12 over the evaluation of f alone. Utilizing different seed vectors q (e.g., e1, e2, . . . , en for the full
Hessian) and possibly employing graph-coloring techniques when the Hessian is sparse, can significantly reduce the
computational cost compared to direct evaluation methods.

35

13 Convolution

In this lecture we are going to deal with the topic of convolution. The general definition is given by:

(f ∗ g)(x) =

∫ +∞

−∞
f(t)g(x− t)dt

The operation can be applied also to vector with:

(c ∗ d)K =
∑

i+j=k

cidj =
∑
i

cidk−i

The pedix K is used to indicate the k-th element of the vector to which is the convolution is applied. The vectors
can be expressed also as polynomials:

c(x) = c0 + c1x + c2x
2 + · · ·+ cn−1x

n−1

d(x) = d0 + d1x + d2x
2 + · · ·+ dn−1x

n−1

The convolution is the product of these polynomials. [to finish]

Cyclic convolution

The cyclic convolution is a particular case of convolution in which the vectors are cyclic. This means that the last
element of the vector is followed by the first one. The cyclic convolution is defined as:

(c⊛ d)K =
∑

i+j=k mod (n)

cidj

How can this be written in matrix form?

Convolution

In this case are used the Toeplitz matrices (or also
called Time-Invariant Linear Systems), the elements are
given by (2n− 1)-length sequence:

{tK : −(n− 1) ≤ K ≤ (n− 1)}

The element in position (i, j) is given by T (i, j) = ti − tj
and the generic Toeplitz matrix as this shape:

T =


t0 t1 t2 t3
t−1 t0 t1 t2
t−2 t−1 t0 t1
t−3 t−2 t−1 t0


So, it’s easy to notice that on the diagonal there is always
a constant vector.

Cyclic convolution

In this case are used the Circulant matrices, a partic-
ular case of a Toeplitz matrix. For a given n× n matrix,
the elements are given by (n)-length sequence:

{cK : 0 ≤ K ≤ (n− 1)}

The element in position (i, j) is given by C(i, j) =
ci−j mod (n) and the generic Circulant matrix as this
shape:

C =


c0 cn−1 cn−2 . . . c1
c1 c0 cn−1 . . . c2
c2 c1 c0 . . . c3
...

...
...

. . .
...

cn−1 cn−2 cn−3 . . . c0


As you can see, the last element of a column vector be-
comes the first element of the next column vector, for this
reason is called circulant.

Example of circulant matrix:

C =


1 8 5 3
3 1 8 5
5 3 1 8
8 5 3 1


Now we introduce a permutation matrix P defined as follows:

P =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0


36

If we multiply the permutation matrix with a vector, this happen:

Pc =


0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0



c0
c1
c2
c3

 =


c1
c2
c3
c0


All elements are shifted of 1 position. This means that the circulant matrix C can be built as follows:

C = c0I + c1P + c2P
2 + c3P

3

This is true for any circulant matrix so we define also D:

D = d0I + d1P + d2P
2 + d3P

3

What happen when we multiply CD, i.e two circulant matrices?

CD = (c0I + c1P + c2P
2 + c3P

3)(d0I + d1P + d2P
2 + d3P

3)

But this means that we end up with elements with P 4 and P 5 and so on, but P 4 = I, P 5 = P and P 6 = P 2. This
makes sense even considering that we are dealing with circulant matrices. In general we can say:

Pn of n× n =⇒ Pn = I

Eigenvectors and eigenvalues of a circuland matrix

Let’s start considering again the permutation matrix P . We can compute its eigenvalues by using the definition
method:

P − λI =


−λ 1 0 0
0 −λ 1 0
0 0 −λ 1
1 0 0 −λ

 =⇒ det(P − λI) = λ4 − 1 = 0

So the eigenvalues of P are the fourth roots of 1, which correspond to:

λ4 − 1 = 0

λ1 = 1

λ2 = i

λ3 = −1

λ4 = −i

We introduce now the complex number w given by:

wi = e

2πi

n in this case−→ wi = e

2πi

4 =⇒


λ1 = w0

λ2 = w1

λ3 = w2

λ4 = w3

In general we have:
Pn =⇒ λn − 1 = 0 =⇒ w0, w1, . . . , wn−1

Another property of P : it’s orthogonal indeed P ⊺P = I. What about the eigenvectors of P? Consider the generic
matrix C written in terms of P :

C = c0I + c1P + c2P
2 + c3P

3

We want to find the eigenvectors of C. If λk, vk is the couple of eigenvalue and eigenvector of P , then:

Pvk = λkvk

(c0I + c1P + c2P
2 + c3P

3)vk = (c0 + c1λk + c2λ
2
k + c3λ

3
k)vk

vk is an eigenvector of C.

37

14 Discrete Fourier Transform

Consider the general theory of eigenvalues and eigenvectors. Given a square matrix A, an eigenvalue λ and an
associated eigenvector v are defined such that:

Av = λv

This implies that the action of the matrix A on the vector v is equivalent to scaling v by λ.

Eigenvalues and Eigenvectors of a Circulant Matrix

A circulant matrix C can be defined in terms of its generating vector c. The eigenvalues and eigenvectors of C can
be obtained through the Discrete Fourier Transform (DFT). Specifically, if F represents the Fourier matrix, then:

C = F−1ΛF

where Λ is a diagonal matrix containing the eigenvalues of C.

Discrete Fourier Transform (DFT)

The DFT of a vector c is computed by multiplying it by the Fourier matrix F:

F =
1√
n


1 1 1 · · · 1
1 w w2 · · · wn−1

1 w2 w4 · · · w2(n−1)

...
...

...
. . .

...
1 wn−1 w2(n−1) · · · w(n−1)(n−1)


where w = e2πi/n is a primitive n-th root of unity. The DFT transforms a vector into its frequency domain
representation.

Eigenvalues of Circulant Matrices

For a circulant matrix C generated by vector c, its eigenvalues are given by:

λc = Fc

Here, λc represents the vector of eigenvalues of C.

Convolution and Eigenvalues

Consider two circulant matrices C and D generated by vectors c and d respectively. The product CD is also a
circulant matrix. The eigenvalues of CD are related to the eigenvalues of C and D by element-wise multiplication:

λ(CD) = λ(C) ⊚ λ(D) = Fc⊚ Fd

This property arises from the fact that the Fourier transform diagonalizes circulant matrices.

Convolution Theorem

The convolution of two vectors c and d, denoted c ⊛ d, corresponds to the Hadamard product of their Fourier
transforms:

F(c⊛ d) = Fc⊚ Fd

This is known as the Convolution Theorem and provides a computationally efficient method for computing convolu-
tions using the Fast Fourier Transform (FFT). With FFT (Fast Fourier Transform) algorithm the first member can
be computed with N log(N) + N2, while the second term is easier with (2N log(N) + N)and is this the preferred
approach.

38

15 Optimization in Neural Networks

A neural network can be seen as a map:
FNN (x) = y

We can define a cost function:

J =
1

2N

N∑
i=1

(ȳi − yi)
2

Inside FNN , we have nodes that represent weights w and biases b, chosen to minimize J :

(w, b) = J

The objective in machine learning is not only to find w and b to build the function FNN minimizing J , but also
to create FNN capable of making predictions (train set ̸= test set).

In the optimization context, we want to get closer to the minimum J without overfitting (i.e., the model should
understand the underlying pattern of the data, not just memorize it).

The gradient method, particularly its variant Stochastic Gradient Descent (SGD), is the most used method
in machine learning. It is simple and robust (can be implemented with non-convex functions, though theoretical
guarantees are for convex ones).

Let’s recall its application to linear systems:
Ax = b

with solution x∗, where A ∈ Rn×n is a symmetric positive definite matrix.
We define the functional:

J(x) =
1

2
xTAx− xT b

To find the minimum:
∇J(x) = Ax− b = 0

⇒ Ax∗ = b

Algorithm

Given an initial guess x(0):
For k = 0, 1, . . .:

1. p(k) = −∇J(x(k)) = r(k)

2. x(k+1) = x(k) + αkp
(k)

where αk is the step length, chosen to minimize J(x(k) + αp(k)).
Stopping criteria: ∥r(k)∥ ≤ ε or ∥x(k+1) − x(k)∥ < ε

Step Length Calculation

Suppose x(k) and p(k) are given:

J(x(k) + αp(k)) =
1

2
(x(k) + αp(k))TA(x(k) + αp(k))− (x(k) + αp(k))T b

=
1

2
α2(p(k))TAp(k) + α(p(k))TAx(k) − α(p(k))T b + constants

Setting the derivative to zero:

∇J = 0 = (p(k))TAx(k) + α(p(k))TAp(k) − (p(k))T b

⇒ α =
(p(k))T (b−Ax(k))

(p(k))TAp(k)
=

(p(k))T r(k)

(p(k))TAp(k)

Define the error, in the energy norm of the matrix A:

e =
1

2
(x− x∗)TA(x− x∗)

Error bound:

e(x(k)) ≤
(
λmax − λmin

λmax + λmin

)2k

e(x(0))

where λmax and λmin are the maximum and minimum eigenvalues of A.

39

General Convex Optimization

Now let J : Rd → R be convex and differentiable, with a global minimum x∗. The aim is to find an approximation
x̃ of x∗ such that:

J(x̃)− J(x∗) < ε

Algorithm

Generate a sequence x(0), x(1), . . . using the rule:

x(k+1) = x(k) + v(k)

To guarantee J(x(k+1)) < J(x(k)):

J(x(k) + v(k)) ≈ J(x(k)) +∇J(x(k))Tv(k) +O(∥v(k)∥2)

Therefore, we can move in the direction of maximum descent by following this rule:

v(k) = −α∇J(x(k)), α > 0

x(k+1) = x(k) − γ∇J(x(k))

where γ is the learning rate.
Remember that:

• γ can be fixed or can depend on k

• Choice of γ is crucial:

– If too small: very slow procedure

– If too large: overshooting (oscillating behavior)

Convexity Criterion

For J(x), x ∈ Rd, if the domain of J is convex, then J is convex if and only if:

J(y) ≥ J(x) +∇J(x)T (y − x) ∀x, y ∈ dom(J)

This means the graph of function J lies above the tangent hyperplane to J in x.
A convex function has the property of monotonicity of the gradient.

Monotonicity of the Gradient
A function’s gradient ∇f is said to be monotone if for all x, y ∈ Rn,

(∇f(y)−∇f(x))⊤(y − x) ≥ 0

15.1 Convergence Analysis

Let’s analyze the convergence of the method. If J is convex, then:

J(x(k))− J(x∗) ≤ ∇J(x(k))T︸ ︷︷ ︸
e(k)

(x(k) − x∗)

For the iteration that defines the method:

e(k) =
x(k) − x(k+1)

γ

⇒ (e(k))T (x(k) − x∗) =
1

γ
(x(k) − x(k+1))T (x(k) − x∗)

Now I will derive an easy identity:

1. ∥v − w∥2 = (v − w)T (v − w)

2. ∥v − w∥2 = vT v − 2vTw + wTw

40

3. ∥v − w∥2 = ∥v∥2 − 2vTw + ∥w∥2

4. 2vTw = ∥v∥2 + ∥w∥2 − ∥v − w∥2

Using the identity 2vTw = ∥v∥2 + ∥w∥2 − ∥v − w∥2, we get:

(e(k))T (x(k) − x∗) =
1

2γ
[∥x(k) − x(k+1)∥2 + ∥x(k) − x∗∥2 − ∥x(k+1) − x∗∥2]

=
1

2γ
[γ2∥e(k)∥2 + ∥x(k) − x∗∥2 − ∥x(k+1) − x∗∥2]

=
γ

2
∥e(k)∥2 +

1

2γ
[∥x(k) − x∗∥2 − 1

2
∥x(k+1) − x∗∥2]

Summing over iterations:

T−1∑
k=0

(e(k))T (x(k) − x∗) =
γ

2

T−1∑
k=0

∥e(k)∥2 +
1

2γ
[∥x(0) − x∗∥2 − 1

2γ
∥x(T) − x∗∥2]

≤ γ

2

T−1∑
k=0

∥e(k)∥2 +
1

2γ
∥x(0) − x∗∥2

Therefore:
T−1∑
k=0

(J(x(k))− J(x∗)) ≤ γ

2

T−1∑
k=0

∥e(k)∥2 +
1

2γ
∥x(0) − x∗∥2

15.2 Convergence Theorem for Lipschitz Convex Functions

Let J : Rd → R be convex and differentiable, and also:

• ∥x(0) − x∗∥ ≤ R

• ∥∇J(x)∥ ≤ B ∀x

If we choose γ := R
B
√
T

, then:

1

T

T−1∑
k=0

(J(x(k))− J(x∗)) ≤ RB√
T

To achieve a certain tolerance ε:
RB√
T

< ε

T ≥ R2B2

ε2

Note: There’s no dependence on d! The number of iterations is O(1/ε2).
The previous relation can be bounded:

T−1∑
k=0

(J(x(k))− J(x∗)) ≤ γ

2
B2T +

R2

2γ︸ ︷︷ ︸
q(γ)

We want to find γ to minimize q. Set q′(γ) = 0:

1

2
B2T − R2

2γ2
= 0

γ =
R

B
√
T

41

Proof of Convergence Theorem

The previous relation can be bounded:

T−1∑
k=0

(J(x(k))− J(x∗)) ≤ γ

2
B2T +

R2

2γ︸ ︷︷ ︸
q(γ)

We want to find γ to minimize q. Set q′(γ) = 0:

1

2
B2T − R2

2γ2
= 0

γ =
R

B
√
T

Therefore:

q

(
γ =

R

B
√
T

)
= RB

√
T

Equivalence of Smoothness and Convexity

Let dom(J) be open and convex, and J : dom(J)→ R be differentiable. Let L ∈ R+.
J is said to be L-smooth (or smooth with parameter L) if it satisfies the following smoothness inequality for all
x, y ∈ dom(J):

J(y) ≤ J(x) +∇J(x)T (y − x) +
L

2
∥y − x∥2

Let dom(J) be open and convex, and J : dom(J) → R be differentiable. Let L ∈ R+. The following statements
are equivalent:

1. J is smooth with parameter L

2. The function h(x) = L
2 x

Tx− J(x) is convex over dom(h) := dom(J)

Example 1: L = 0 When L = 0, smoothness implies:

J(y) = J(x) +∇J(x)T (y − x)

Example 2: J(x) = x2 This function is not globally Lipschitz continuous, but it is smooth (has a Lipschitz
continuous gradient).

Let’s expand J(y) around x:

J(y) = y2

= (x + (y − x))2

= x2 + 2x(y − x) + (y − x)2

= J(x) +∇J(x)T (y − x) + (y − x)2

Explanation of the expansion:

• J(x) = x2 is our original function at point x

• ∇J(x) = 2x, so ∇J(x)T (y − x) = 2x(y − x)

• The term (y − x)2 is the remainder

This expansion matches the form of the smoothness condition:

J(y) ≤ J(x) +∇J(x)T (y − x) +
L

2
(y − x)2

In this case, the inequality is an equality with L
2 = 1, so L = 2.

To verify smoothness, we check the gradient condition:

|∇J(y)−∇J(x)| = |2y − 2x| = 2|y − x| ≤ L|y − x|

which is satisfied with L = 2.
Therefore, J(x) = x2 is a smooth function with parameter L = 2. This example illustrates that a function can

be smooth without being globally Lipschitz continuous.

42

Example 3: Quadratic Function Consider J(x) = xTQx + bTx + c, where:

• Q ∈ Rd×d is symmetric

• b ∈ Rd

• c ∈ R

This function is smooth with L = 2∥Q∥2, where ∥Q∥2 is the spectral norm of Q.
Note: Subquadratic functions are not necessarily smooth.

Equivalence Lemma for Smooth Functions

Let J : Rd → R be convex and differentiable. The following statements are equivalent:

• J is smooth with parameter L

• ∥∇J(x)−∇J(y)∥ ≤ L∥y − x∥ ∀x, y ∈ Rd (Lipschitz continuity of gradient)

15.3 Decreasing Condition Lemma

[Decreasing Condition] Let J : Rd → R be differentiable and smooth with parameter L. With γ := 1
L , the Gradient

Descent satisfies:

J(x(k+1)) ≤ J(x(k))− 1

2L
∥∇J(x(k))∥2 k ≥ 0

The Gradient Descent update is given by:

x(k+1) = x(k) − 1

L
∇J(x(k))

By the smoothness property:

J(x(k+1)) ≤ J(x(k)) + (∇J(x(k)))T (x(k+1) − x(k)) +
L

2
∥x(k+1) − x(k)∥2

= J(x(k))− (∇J(x(k)))T
1

L
∇J(x(k)) +

L

2
∥ 1

L
∇J(x(k))∥2

= J(x(k))− 1

2L
∥∇J(x(k))∥2

15.4 Convergence Theorem for Smooth Functions

Let J : Rd → R be differentiable and smooth with parameter L. Choosing γ := 1
L , then for Gradient Descent you

have:

J(x(T))− J(x∗) ≤ L

2T
∥x(0) − x∗∥2, T > 0

where x∗ is the optimal point.

From the decreasing condition lemma, and the usual telescopic sum formula:

1

2L

T−1∑
k=0

∥∇J(x(k))∥2 ≤
T−1∑
k=0

(J(x(k))− J(x(k+1))) = J(x(0))− J(x(T))

Remembering that:
||ek||2 = ||∇J(x(k))||2

We know that:
T−1∑
k=0

(J(x(k))− J(x∗)) ≤ γ

2

T−1∑
k=0

∥e(k)∥2 +
1

2γ
∥x(0) − x∗∥2

For γ = 1
L :

T−1∑
k=0

(J(x(k))− J(x∗)) ≤ 1

2L

T−1∑
k=0

∥e(k)∥2 +
L

2
∥x(0) − x∗∥2

≤ J(x(0))− J(x(T)) +
L

2
∥x(0) − x∗∥2

⇒
T∑

k=1

(J(x(k))− J(x∗)) ≤ L

2
∥x(0) − x∗∥2

43

By the decreasing condition lemma, J(x(k+1)) ≤ J(x(k)) ∀ 0 ≤ k ≤ T , so:

J(x(T))− J(x∗) ≤ 1

T

T∑
k=1

(J(x(k))− J(x∗)) ≤ L

2T
∥x(0) − x∗∥2

Convergence results for Gradient Descent

• Lipschitz-convex functions: O

(
1

ϵ2

)

• Smooth functions: O

(
1

ϵ

)

• Smooth and strongy convex functions: O

(
1

log(ϵ)

)

• Accelerated gradient descent: O

(
1√
ϵ

)

16 Accelerated Gradient Descent

Aim: minimizing convex function f : Rd → R (with gradient ∇f). ”First order method” because it only uses the
function and its gradient. What is the best first order method?

Nemirovski and Yudin (1979): every first order method needs in the worst case O

(
1√
ϵ

)
steps.

Nesterov (1983): accelerated gradient descent (AGD). Let f : Rd → R convex, differentiable and smooth with
parameter L. ADG reads:

• choose z(0) = y(0) = x(0)

• for k ≥ 0 set:

– y(k+1) = x(k) − 1

L
∇f(x(k)) Normal step

– z(k+1) = z(k) − k + 1

2L
∇f(x(k)) Aggressive step

– x(k+1) =
k + 1

k + 3
y(k+1) +

2

k + 3
z(k+1) Average

Theorem of convergence of AGD: lef f : Rd → R convex, differentiable with a global minimum x∗ and
smooth with parameter L. AGD yields:

f(y(N))− f(x∗) ≤ 2L∥z(0) − x∗∥2

N(N + 1)
N > 0

Definition of smooth and strongly convex functions: Let f : dom(f) → R be a convex and differentiable
function, X ⊆ dom(f) convex and µ ∈ R+. Function f is called strongly convex with parameter µ over X if:

f(y) ≥ f(x) +∇f(x)T (y − x) +
µ

2
∥y − x∥2 ∀x, y ∈ X

Remark

• smoothness: ∀x ∈ X the graph of f is below a not-too-steep tangent paraboloid.

• Strongly-convex: ∀x ∈ X the graph of f is above a not-too-flat tangent paraboloid.

Theorem of convergence: strongly convex case: let f : Rd → R be a convex, differentiable. Suppose that f is
smooth with parameter L and strongly convex with parameter µ ¿ 0. Choosing:

ν =
1

L

Gradient Descent with arbitrary initial point x(0) satisfies:

44

1. Squared distances to x∗ are geometrically decreasing: ∥x(k+1) − x∗∥2 ≤
(

1− µ

L

)
∥x(k) − x∗∥2 k ≥ 0

2. Absolute error after N iterations is exponentially small in N: f(x(N)) − f(x∗) ≤ L

2

(
1− µ

L

)N
∥x(0) − x∗∥2

N > 0

Remember: recalling that ln(1 + x) ≤ x we have:

N ≥ L

µ
ln

(
R2L

2ϵ

)

Derivation of last inequality

Let R2 = ∥x(0) − x∗∥2. Then:

LR2

2

(
1− µ

L

)N
≤ ε

Taking logarithms of both sides:

ln

(
LR2

2

)
+ N ln

(
1− µ

L

)
≤ ln(ε)

Rearranging:

N ln
(

1− µ

L

)
≤ ln(ε)− ln

(
LR2

2

)
Dividing both sides by ln

(
1− µ

L

)
ln
(
1− µ

L

)
(note that this is negative, so the inequality flips):

N ≥
ln
(

2ε
LR2

)
ln
(

L−µ
L

)
Now, we can use the inequality ln(1 + x) ≤ x ln(1 + x) ≤ xforx > −1x > −1.Letx = − µ

Lx = − µ
L . Then:

ln
(

1− µ

L

)
≤ −µ

L

Therefore:

N ≥
ln
(

2ε
LR2

)
− µ

L

=
L

µ
ln

(
LR2

2ε

)

45

17 Stochastic Gradient Descent (SGD)

In machine learning, cost functions are often written as a finite sum:

J(x) =
1

N

N∑
i=1

Ji(x)

Since in application we have to compute the gradient of N cost functions to calculate ∇J , the idea is to pick randomly
an integer i(K) ∈ {1, 2, . . . , N} at each iteration K and use the following iteration rule. The SGD update rule is:

x(k+1) = x(k) − γk∇Ji(k)(x(k))

where i(k) is randomly chosen from {1, 2, . . . , N} at each iteration.
While in Gradient Descent (GD) the cost function decreases at each iteration, the stochastic version is not

monotone (but still converges). It typically consists of two phases:

1. It converges quickly to a neighborhood of the solution

2. It bounces around this neighborhood

Example Cost Function

Consider the cost function:

J(x) =
1

2

N∑
i=1

(aix− bi)
2 ai, bi ∈ R

The gradient and optimal solution are:

∇J(x) =

N∑
i=1

ai(aix− bi) = 0

x∗ =

∑N
i=1 aibi∑N
i=1 a

2
i

For individual terms:

J̄i(x) =
1

2
(aix− bi)

2 (parabolas)

∇Ji(x) = ai(aix− bi)

x∗
i =

bi
ai

Region of Confusion

Define the region of confusion as:

R := [min
i

x∗
i ,max

i
x∗
i] where x∗ ∈ R

The area outside Ω \R is called the ”far out zone.” If x is outside of R, then ∇Ji(x) has the same sign as ∇J(x).

46

There are two strategies for choosing samples at each iteration:

1. Random sampling with replacement

2. Random sampling without replacement

The second option is better for hardware efficiency, while the first is theoretically better for convergence.

Mini-Batch Approach

The mini-batch approach uses more than one sample to compute ∇J :

εk =
1

|Ik|
∑
ik∈Ik

∇Jik(x(k)) Ik ⊂ I

where:

• If |Ik| = 1, we have stochastic gradient descent

• If Ik = I, we have batch gradient descent

This strategy reduces the noise (variance) introduced by using only one sample. Unlike stochastic gradient descent
(SGD) which uses just one sample to compute the gradient, the mini-batch approach uses multiple samples (equal
to the batch size) to compute ∇J (the gradient of the cost function).

The mini-batch gradient estimate is given by:

εk =
1

|Ik|
∑
ik∈Ik

∇Jik(x(k)) (1)

Where:

• Ik is a subset of the full dataset I

• |Ik| is the size of the mini-batch

Special cases:

• When |Ik| = 1, you have stochastic gradient descent (SGD)

• When Ik = I (i.e., the full dataset), you have batch gradient descent

Advantages of mini-batch gradient descent:

• Noise Reduction: Mini-batch reduces the noise (variance) introduced by using only one sample, as in SGD.

• Parallelizability: Mini-batch allows for efficient parallelization of computations, which is particularly benefi-
cial when using GPUs or multi-core CPUs. This leads to faster training times and better hardware utilization.

47

• Balance: It offers a good balance between the frequent updates of SGD and the stability of batch gradient
descent.

In neural networks, it’s generally better not to use very large mini-batches because:

• Large mini-batches can create overfitting problems.

• They may shrink the region of convergence.

• They can potentially reduce the model’s generalization ability.

The optimal mini-batch size often depends on the specific problem and available computational resources.

17.1 Equivalent Statements

The following statements are equivalent:

a) J(y) ≥ J(x) + (∇J(x))T (y − x) + µ
2 ∥x− y∥2 (strongly convex)

b) K(x) = J(x)− µ
2 ∥x∥

2 is convex

c) (∇J(y)−∇J(x))T (y − x) ≥ µ∥x− y∥2

d) 1
2∥∇J(x)∥2 ≥ µ(J(x)− J(x∗)) (Polyak- Lojasiewicz (PL) condition)

Proof

(b) ⇐⇒ (a)

K(y) ≥ K(x) +∇K⊤(x)(y − x) [given inequality](
J(y)− µ

2
∥y∥2

)
≥
(
J(x)− µ

2
∥x∥2

)
+∇K⊤(x)(y − x) [substitute K(y) and K(x)]

J(y) ≥ J(x) +
µ

2
(∥y∥2 − ∥x∥2) +

(
∇J(x)− µx⊤) (y − x) [rearrange terms]

= J(x) +
µ

2
(∥y∥2 − ∥x∥2) +∇J⊤(x)(y − x)− µx⊤(y − x) [expand ∇K⊤(x)]

= J(x) +∇J⊤(x)(y − x) +
µ

2
(∥y∥2 − ∥x∥2)− µx⊤(y − x) [group gradient terms]

= J(x) +∇J⊤(x)(y − x) +
µ

2
(2x⊤(y − x) + ∥y − x∥2)− µx⊤(y − x) [vector identity]

= J(x) +∇J⊤(x)(y − x) + µx⊤(y − x) +
µ

2
∥y − x∥2 − µx⊤(y − x) [distribute

µ

2
]

= J(x) +∇J⊤(x)(y − x) +
µ

2
∥y − x∥2 [simplify, cancel terms]

(b) =⇒ (c) By the monotonicity of the gradient:

(∇K(y)−∇K(x))⊤(y − x) ≥ 0 ∀x, y[
∇
(
J(y)− µ

2
∥y∥2

)
−∇

(
J(x)− µ

2
∥x∥2

)]⊤
(y − x) ≥ 0

(∇J(y)−∇J(x)− µy + µx)
⊤

(y − x) ≥ 0

(∇J(y)−∇J(x))⊤(y − x) ≥ µ(y − x)⊤(y − x) = µ∥y − x∥2

For x = x∗:
∇J⊤(y)(y − x∗) ≥ µ∥y − x∗∥2

48

(a) =⇒ (d) Minimize each term of (a):

• LHS: J(x∗)

• RHS: ∇J(x) + µ(y − x) = 0

Therefore:

y = x− 1

µ
∇J(x)

J(x∗) ≥ J(x)− 1

µ
∇JT (x)∇J(x) +

1

2µ
∥∇J(x)∥2

J(x∗) ≥ J(x)− 1

2µ
∥∇J(x)∥2

Which is equivalent to:
1

2
∥∇J(x)∥2 ≥ µ(J(x)− J(x∗))

This completes the proof of (a) =⇒ (d).
Let’s continue the discussion on stochastic gradient descent method. We recall the cost function:

J(w) =
1

N

N∑
i=1

Ji(w)

And the algorithm is the following:

• Sample ik randomly from {1, . . . , N}.

• Update wk+1 = wk − γk ∇Jik(wk)︸ ︷︷ ︸
gk=stochastic gradient

.

17.2 Simple convergence results for SGD

Consider two quantities:

• J(w(k+1))− J(w∗)

• E[J(w(k+1))− J(w∗)]

These are two measures to evaluate the convergence of the algorithm. We can consider convergence in expectation.
We have two main results: Assume:

1. J is smooth (L-Lipschitz):

J(y) ≤ J(x) + (∇J(x))T (y − x) +
L

2
∥x− y∥2

2. J is strongly convex:

J(y) ≥ J(x) + (∇J(x))T (y − x) +
µ

2
∥x− y∥2

3. ∥∇Jt(x)∥ ≤ c for some c > 0

4. 0 < 2µγ ≤ 1 for some constant γ

5. E[∇Jt(x)] = ∇J(x) (unbiased estimator)

Then we have that:

1. E[J(w(k))− J(w∗)] ≤ (1− 2µγ)k[J(w(0))− J(w∗)] +
LγC2

4µ

2. E[∥x∗ − zk∥2] ≤ (1− 2γµ)k(J(x0)− J(x∗)) + γC2

2µ

The linear convergence is polluted by a factor bounded by γ.

49

Proof

Assuming J is smooth:
By smoothness of J :

J(xk+1) ≤ J(xk) + (∇J(xk))⊤(xk+1 − xk) +
L

2
∥xk+1 − xk∥2

Substituting xk+1 = xk − γ∇Jik(xk):

J(xk+1) ≤ J(xk) +∇J(xk)⊤(−γ∇Jik(xk)) +
Lγ2

2
∥∇Jik(xk)∥2

Using the bound ∥∇Jik(xk)∥2 ≤ C2:

J(xk+1) ≤ J(xk)− γ∇J(xk)⊤∇Jik(xk) +
Lγ2C2

2

Taking expectation, and using the fact that ∇Jik(xk) is an unbiased estimator of ∇J(xk)::

E[J(xk+1)] ≤ E[J(xk)− γ∇J(xk)⊤∇J(xk)] +
Lγ2C2

2

E[J(xk+1)] ≤ J(xk)− γ∥∇J(xk)∥2 +
Lγ2C2

2

Subtracting J(x∗) from both sides:

E[J(xk+1)− J(x∗)] ≤ J(xk)− J(x∗)− γ∥∇J(xk)∥2 +
Lγ2C2

2

Using the PL condition for strongly convex functions: ∥∇J(xk)∥2 ≥ 2µ(J(xk)− J(x∗)):

E[J(xk+1)− J(x∗)] ≤ (1− 2γµ)(J(xk)− J(x∗)) +
Lγ2C2

2

Applying this inequality recursively, and bounding the resulting geometric series:

E[J(xk+1)− J(x∗)] ≤ (1− 2δµ)
k+1 (

J(x0)− J(x∗)
)

+

k+1∑
i=0

(1− 2γµ)
i Lγ

2C

2
≤ (1− 2γµ)k+1(J(x0)− J(x∗)) +

LγC2

4µ

This proves the first result. For the second result:

Consider ∥xk+1 − x∗∥2:
∥xk+1 − x∗∥2 = ∥xk − γ∇Jik(xk)− x∗∥2

Expanding:
∥xk+1 − x∗∥2 = ∥xk − x∗∥2 − 2γ∇Jik(xk)⊤(xk − x∗) + γ2∥∇Jik(xk)∥2

Using the bound ∥∇Jik(xk)∥2 ≤ C2:

∥xk+1 − x∗∥2 ≤ ∥xk − x∗∥2 − 2γ∇Jik(xk)⊤(xk − x∗) + γ2C2

Taking expectation:

E[∥xk+1 − x∗∥2] ≤ ∥xk − x∗∥2 − 2γ∇J(xk)⊤(xk − x∗) + γ2C2

Using strong monotonicity of the gradient for strongly convex functions, and the fact that at x∗ the gradient is
null: ∇J(xk)⊤(xk − x∗) ≥ µ∥xk − x∗∥2:

E[∥xk+1 − x∗∥2] ≤ (1− 2γµ)∥xk − x∗∥2 + γ2C2

Applying this inequality recursively, and bounding the resulting geometric series as previously:

E[∥xk+1 − x∗∥2] ≤ (1− 2γµ)k+1∥x0 − x∗∥2 +
γC2

2µ

This proves the second result.

50

Convergence Properties

SGD with a constant learning rate and single-sample gradient computation exhibits linear convergence. This linear
convergence applies to both:

• The value of the objective function

• The values of the parameter iterates

The convergence is affected by a constant factor that depends on the chosen learning rate, as shown previously.:

Importance of Learning Rate (γ)

Up to this point, we’ve considered γ as a fixed value. The choice of γ is crucial:

• If γ is too small: The algorithm converges slowly, leading to high computational costs.

• If γ is too large: The algorithm may fail to converge or even diverge.

The learning rate doesn’t have to remain constant throughout the optimization process. It can be adjusted in
two ways:

label=() Iteration-based: The learning rate changes from one iteration to the next.

lbbel=() Parameter-specific: Different parameters within the model can have individualized learning rates.

These adaptive strategies can help balance convergence speed and stability, potentially leading to more efficient
optimization. Common adaptive learning rate methods include:

• AdaGrad

• RMSprop

• Adam

Each of these methods adjusts the learning rate based on the historical gradient information, allowing for more
nuanced optimization trajectories.

Line Search Procedure

Example of picking learning rate varying on the iteration (γk):

• initial guess: w(0)

• pick a direction P k such that P ⊺
k∇J(w(k)) < 0 (i.e direction towards the minimum)

• typically P k =
−∇J(w(k))

∥∇J(w(k))∥

• w(k+1) = w(k) + γkP k

• γk is chosen to minimize (arg minγ) J(w(k) + γkP k)

Obviously the choice of γk is a minimization problem, that can be solved by means of analytical methods or by
iterative procedures depending on the case.
Example
Consider the function:

J(x) = x1 − x2 + 2x1x2 + 2x2
1 + x2

2

x =

[
x1

x2

]
∇J(x) =

[
1 + 2x2 + 4x1

−1 + 2x1 + 2x2

]
Let’s define the initial guess and so the initial gradient:

x(0) =

[
0
0

]
∇J(x(0)) =

[
1
−1

]

51

Now, we have to solve:

J(x(0) − γ∇J(x(0))) = J

([
0
0

]
− γ

[
1
−1

])
= J

([
−γ
γ

])
= γ2 − 2γ

Now we have to minimize this function so we compute the derivative and set it to 0:

d

dγ
J

([
−γ
γ

])
= 2γ − 2 = 0 =⇒ γ = 1

This means that, for the first iteration, the value of the learning rate which minimizes the function is γ = 1. This can
be done for each iteration. This procedure is like cutting the function in one direction and then choose the learning
rate which minimizes that 1D function.

SDG with Momentum

Standard Gradient Descent (GD) only considers the current gradient and learning rate at each iteration, without
taking into account past steps. This leads to two main problems:

1. The gradient of the cost function becomes negligible at plateaus or saddle points, resulting in minimal updates.

2. The path followed can be highly oscillatory, even with mini-batch techniques.

Momentum addresses these issues by incorporating contributions from previous directions. This allows Gradient
Descent with Momentum to take larger steps in directions where past gradients have been consistent, and smaller
steps when the gradient oscillates.

The update rule for Gradient Descent with Momentum is given by:

xt+1 = xt − γt∇Ji(xt) + β(xt − xt−1) (2)

where:

• xt is the parameter vector at iteration t

• γt is the learning rate at iteration t

• ∇Ji(xt) is the gradient of the cost function with respect to xt

• β is the momentum constant

The momentum constant β typically ranges from 0.8 to 0.99:

β ∈ [0.8, 0.99] (3)

Both γ (learning rate) and β (momentum constant) are hyperparameters. They are not automatically tuned or
optimized, but must be chosen a priori. Their selection is crucial for achieving good results. Proper tuning of these
hyperparameters is fundamental to the success of the Gradient Descent with Momentum algorithm.

To address this problem, Adadelta and RSMProp take some sort of average gradients.

52

18 Newton’s Method

We begin by reviewing Newton’s method in one dimension for two contexts: finding the root of a function and finding
the minimum of a function. We then extend the method to higher dimensions. Recall that a function f is C2 if f is
twice differentiable and f ′′ is continuous.

Root-Finding Problem

Let α be a zero of f . For f ∈ C2(R):

f(α) = 0 = f(x) + (α− x)f ′(ξ) (4)

where ξ is between x and α. This leads to the iterative formula:

x(k+1) = x(k) − f(x(k))

f ′(x(k))
∀k ≥ 0 (5)

given an initial guess x(0).

Minimization Problem

For f ∈ C2(R), we use the second-order Taylor approximation:

f(x(k) + ϵ) = f(x(k)) + ϵf ′(x(k)) +
ϵ2

2
f ′′(x(k)) (⋆)

To minimize this approximation, we set its derivative to zero:

d

dϵ
(⋆) = f ′(x(k)) + ϵf ′′(x(k)) = 0 =⇒ ϵ = − f ′(x(k))

f ′′(x(k))
(6)

This yields the iterative formula:

x(k+1) = x(k) − f ′(x(k))

f ′′(x(k))
∀k ≥ 0 (⋆⋆)

given an initial guess x(0).

Multi-Dimensional Newton’s Method

The goal of Newton’s method in higher dimensions is to find:

min
w

J(w) (7)

A necessary condition for w∗ to be a minimum is that ∇J(w∗) = 0.
The multi-dimensional Newton’s method is a generalization of (⋆⋆):

w(k+1) = w(k) −H(w(k))−1∇J(w(k)) ∀k ≥ 0 (8)

where H(w(k)) is the Hessian matrix of J at w(k). Note that H(w(k)) must be non-singular for this method to
work.

We define the search direction:

d(w(k)) = −H(w(k))−1∇J(w(k)) (9)

Note: If J is convex, then H(w(k)) is positive definite, implying:

d(w(k))⊤∇J(w(k)) = −∇J(w(k))⊤H(w(k))−1∇J(w(k)) < 0 (10)

This means that d(w(k)) is a descent direction. If J is not convex, Newton’s method may converge to local
minimizers or saddle points.

Theorem 1 Let J ∈ C2(Rn), the Hessian be L-Lipschitz continuous, and w∗ be a stationary point. If H(w∗) is
nonsingular, then there exists a neighborhood of w∗, denoted Bρ(w∗) (a ball of radius ρ centered at w∗), such that
for any w(0) ∈ Bρ(w∗), the sequence generated by Newton’s method converges quadratically to w∗, and each iteration
w(k) remains in Bρ(w∗).

53

Note: ρ depends on the Hessian, and w∗ is typically unknown. Bρ(w∗) is called the domain of quadratic attrac-
tion of w∗.

Computational Consideration: Computing the Hessian H and solving Hd = ∇J is computationally expen-
sive, especially for high-dimensional problems.

18.1 Quasi-Newton method

The idea is to approximate the Hessian with a matrix Bk = H(w(k)) which is positive definite and invertible. We
then set

w(k+1) = w(k) + αkdk

Where dk is the direction of descent and αk is the step size. In particular, we set dk = −B−1
k ∇J(w(k)).

The algorithm is the following:

1. Choose w(0) ∈ Rn, B0 ∈ Rn×n nonsingular (often B0 = I), ϵ > 0 and k = 0

2. If ∥∇J(w(k))∥ < ϵ stop

3. Compute dk = −B−1
k ∇J(w(k))

4. Perform a line-search for minimizing ϕ(α) = J(w(k) + αdk): find αk that satisfy the Wolfe conditions and set
w(k+1) = w(k) + αdk

5. Compute Bk+1 (according to some rule)

6. k → k + 1, goto step 2

αk satisfy the Wolfe conditions if, for a given direction dk:

1. J(w(k) + αkdk) ≤ J(w(k)) + c1αkd
⊺
k∇J(w(k)) (Armijo condition)

2. −d⊺k∇J(w(k) + αkdk) ≤ −c2d⊺k∇J(w(k)) (curvature condition)

And 0 < c1 < c2 < 1.

Remember: the first condition is a sufficient decrease condition on values of αk, the second condition is a
curvature condition (reduction of the slope). They give an upper and lower bound on αk.

Remember: if dk = −B−1
k ∇J(w(k)) and Bk is positive definite then if Bk is properly updated then also Bk+1

is positive definite.

Let’s now list all the desired properties of Bk:

i Bk should be non-singular

ii Bk should be such that dk is a descent direction

iii Bk should be symmetric (as H)

iv Bk+1 should be computable by using ∇J(w(k+1)),∇J(w(k)), . . . ,∇J(w(0)), dk, αk.

v Bk+1 should be ”close” to Bk (so Bk can converge to H(w∗) and dk is allowed to become the Newton step
asymptotically)

vi Bk should be such that the computational cost per iteration is at most O(n2) compared to O(n3) for the Newton
method.

Remember: i and iii are satisfied if Bk is symmetric positive definite. For ii we have:

d⊺k∇J(w(k)) = −∇J(w(k))⊺B−1
k ∇J(w(k)) < 0 ⇐⇒ Bk is positive definite

This avoids also QN method to get attracted to any point but a local minimizer.

54

Remember: iv can be obtained if the ”secant condition” is satisfied, i.e.:

Bk+1δk = γ
k

Where
γ
k

= ∇J(w(k+1))−∇J(w(k)) and δk = αkdk

Remember: to quantify the distance between Bk+1 and Bk we can use a norm or by keeping the rank of
Bk+1 −Bk as low as possible.

18.2 Symmetric rank 1 updates

iii and iv can be satisfied by requiring:

Bk+1 = Bk + uu⊺ rank 1 update

By enforcing the secant conditions. In particular:

Bk+1 = Bk + uu⊺ =⇒ Bk+1δk = Bkδk + (uu⊺)δk =⇒ (u⊺δk)u = γ
k
−Bkδk

Transposing and multiplying by δk:

(u⊺δk)2 = (γ
k
−Bkδk)⊺δk =⇒ u =

γ
k
−Bkδk

u⊺δk

Hence

Bk+1 = Bk +
(γ

k
−Bkδk)(γ

k
−Bkδk)⊺

(γ
k
−Bkδk)⊺δk

SR1

Since γ
k

= ∇J(w(k+1))−∇J(w(k)) and δk = αkdk the update requires only already known quantities.

SR1 is

• positive: easy to compute

• negative: Bk not always positive

• negative: dk might not always be defined or be a descent direction

• negative: (γ
k
−Bkδk)⊺δk can be close to zero so we can have large updates

Remember: When dk is known the computations of αk, w
(k+1),∇J(w(k+1)), γ

k
and dk are very cheap. The

computation of the outer product requires computing n2 entries, adding 2 n × n matrices requires n2 additions so
the cost is O(n2). But we have also to solve the linear system, if dk is unknown:

Bkdk = −∇J(w(k)) O(n3) ops required

Theorem (Sherman-Morrison-Woodbury): if B ∈ Rn×n and U, V ∈ Rn×p then

(B + UV ⊺)−1 = B−1 −B−1U(I + V ⊺B−1U)−1V ⊺B−1

Remember: if we knew Ak = B−1
k , applying SMW to B+ = Bk+1, B = Bk, U = u = (γ

k
− Bkδk) and

V = U⊺ (p = 1) we have:

Ak+1 = (B+)−1 = B−1 −B−1u(1 + u⊺B−1u)−1u⊺B−1 = Ak +
(δk −Akγk

)(δk −Akγk
)⊺

(δk −Akγk
)⊺γ

k

This implies that Ak+1 is a rank 1 update of Ak. Since we have assumed that Ak is known, computing dk =
−Ak∇J(w(k)) is O(n2). Hence computing δk and γ

k
is O(n2) plus the outer product which is O(n2). Ak+1 can be

computed from Ak in O(n2).

Remember: if we start with B0 with known inverse (for example B0 = I) then we never need to build Bk.

Remember: SR1 converges superlinearly in a neighborhood of a local minimizer 2.
Drawbacks of SR1: Bk is not guaranteed to be positive definite, dk is not guaranteed to be a descent direction.

2A converging sequence x(k) → x∗ has a convergence rate r ≥ 1 if ∃ρ > 0 and k0 such that

∥x(k+1) − x∗∥ ≤ ρ∥x(k) − x∗∥r ∀k ≥ k0 lim
k→∞

∥x(k+1) − x∗∥
∥x(k) − x∗∥

= 0 superlinear convergence

for r = 1 then ρ < 1.

55

18.3 BFGS

The Broyden-Fletcher-Goldfarb-Shanno algorithm satisfies all properties, from i to vi. The idea is:

Bk+1 = Bk + uu⊺ + vv⊺ u, v linearly independent

So it is a rank 2 update. Important to remember that SR1 was the best rank 1 update while this method, BFGS, is
the best rank 2 update.

Bk+1 = Bk −
Bkγk

γ⊺
k
Bk

δ⊺kBkδk
+

γ
k
γ⊺
k

γ⊺
kδk

where

{
γ
k

= ∇J(w(k+1))−∇J(w(k))

δk = w(k+1) − w(k) = αkdk

Remember:
When the search direction dk is known, the computational cost of the BFGS update consists of two main parts:

• The update itself: O(n2) operations, where n is the dimension of the optimization problem.

• Solving the linear system Bkdk = −∇J(w(k)) to find the next search direction. The solution of this linear system
can be efficiently computed using the Sherman-Morrison-Woodbury (SMW) formula, which takes advantage of
the low-rank structure of the update.

A reduction in complexity is obtained using Cholensky factorization. If Bk is positive definite and we know
Bk = LkL

⊺
k where Lk is lower triangular, then:

Bkdk = −∇J(w(k)) ⇐⇒

{
Lkgk = −∇J(w(k))

L⊺
kdk = g

k

If the Cholensky decomposition of Bk is known then computing dk is O(n2) and so the cost of BFGS per iteration
is O(n2) as well.

Idea:

• find an update rule Lk ← Lk+1 (minimizing d(Lk+1, Lk))

• compute Bk+1 = Lk+1L
⊺
k+1 (positive definite)

• Lk+1 is chosen such that Bk+1 satisfies the secant conditions (property iv)

The actual BFGS algorithm:

1. Choose w(0) and L0 with positive diagonal entries (L0 = I); choose ϵ > 0

2. If ∥∇J(w(k))∥ < ϵ stop

3. Otherwise solve Lkgk = −∇J(w(k)) and L⊺
kdk = g

k

4. Perform a line search to find αk > 0 such that J(w(k) +αdk) < J(w(k)) and such that the Wolfe conditions are
satisfied

5. Set δk = αkdk, w(k+1) = w(k) + δk. Compute γ
k

= ∇J(w(k+1))−∇J(w(k)) and βk = ±

√
γ⊺
k
δk

δ⊺kBkδk

6. Compute J⊺
k+1 = L⊺

k +
L⊺
kδk(γ

k
− βkBkδk)⊺

βkδ
⊺
kBkδk

7. and then compute the QR factorization J⊺
k+1 = Qk+1Rk+1

8. Set Lk+1 = R⊺
k+1 and return to step 2

Remember: the cost of BFGS per iteration is O(n2) and the convergence is superlinear. If BFGS is used for
strictly convex quadratic functions in conjunction with exact line search then Bk is the exact costant Hessian after
n iterations.

Summary of convergence rates and costs

Method Cost per iteration Convergence rate
Steepest descent O(n · c(J)) linear
Quasi-Newton O(n2 + n · c(J)) superlinear

Newton O(n3 + n2 · c(J)) quadratic

56

19 Cross-Entropy Function

Consider the single neuron case. The cost function is defined as:

J =
(y − a)2

2

where y is the desired output and a = σ(z) = σ(wx + b) is the neuron output for input x = 1.
To find the gradients, we compute the partial derivatives of J with respect to w and b:

∂J

∂w
= (a− y)σ′(z)x = aσ′(z) because y = 0

∂J

∂b
= (a− y)σ′(z) = aσ′(z)

For the sigmoid activation function, σ(z), the derivative is:

σ′(z) = σ(z)(1− σ(z))

If a is close to 1, σ′(z) is very small, which means the gradients ∂J
∂w and ∂J

∂b are also small, resulting in slow
learning.

Now, consider a neuron with multiple inputs x1, x2, . . . , xn with weights w1, w2, . . . , wn and bias b:

a = σ(z) = σ(w1x1 + w2x2 + · · ·+ wnxn + b)

Define the cost function J as the cross-entropy function:

J = − 1

N

∑
x

[y ln a + (1− y) ln(1− a)]

where the sum is over all training inputs and y is the desired output (either 0 or 1).
Analyzing J :

1. J is non-negative: all the terms in the sum are negative (logarithm of a number between 0 and 1) and there is
a minus sign in front of the sum.

2. If the output a is close to the desired output y, then J is close to 0. If y = 0 and a ≈ 0, then y ln a vanishes
and − ln(1− a) ≈ 0. Similarly, if y = 1 and a ≈ 1, the same holds true.

Thus, the cross-entropy function J can be used as a cost function.
To compute the partial derivatives of J with respect to the weights:

∂J

∂wj
= − 1

N

∑
x

[
y

1

σ(z)
− (1− y)

1

1− σ(z)

]
∂σ

∂wj

= − 1

N

∑
x

[
y

σ(z)
− (1− y)

1− σ(z)

]
σ′(z)xj

=
1

N

∑
x

[
σ′(z)xj

σ(z)(1− σ(z))

]
(σ(z)− y)

For the sigmoid function σ(z) = 1
1+e−z , σ′(z) = σ(z)(1− σ(z)), we get:

∂J

∂wj
=

1

N

∑
x

xj(σ(z)− y) (⋆)

In (⋆), the error σ(z)− y controls the derivative, eliminating the dependence on σ′(z). Similarly, for the bias b:

∂J

∂b
=

1

N

∑
x

(σ(z)− y)

57

Derivation of Cross-Entropy

To avoid the problem caused by σ′(z), we define J such that σ′(z) does not appear in the derivatives. For a sample,
we want:

∂J

∂wj
= xj(a− y) and

∂J

∂b
= a− y

We have:

∂J

∂b
=

∂J

∂a
σ′(z)

Using σ′(z) = σ(z)(1− σ(z)) = a(1− a), we get:

∂J

∂b
=

∂J

∂a
a(1− a)

From the above equations, we find:

∂J

∂a
=

a− y

a(1− a)

integrating−→ J = −[y ln a + (1− y) ln(1− a)] + C

This derivation shows that the cross-entropy function J eliminates the dependency on σ′(z) in the gradients,
leading to more efficient learning.

Regularization (L2)

Idea: as in Least Squares, add extra term to the cost function. Example:

J = − 1

N

∑
j

[
yj ln aLj + (1− yj) ln(1− aLj)

]
+

λ

2N

∑
w

w2

J =
1

2N

∑
x

∥y − aL∥2 +
λ

2N

∑
w

w2

Where λ > 0 is the regularization parameter. The biases are usually not in the regularization. In this way the
network will favor small weights.

If λ is small we prefer to optimize the original cost function.
If λ is large we prefer to have small weights.
Why does it work? We have:

∂J

∂w
=

∂J0
∂w

+
λ

N
w

∂J

∂b
=

∂J0
∂b

so, the update rule for gradient descent becomes:

b(k+1) = b(k) − η
∂J0
∂b

w(k+1) = w(k) − η

(
∂J0
∂w

+
λ

N
w(k)

)
=

(
1− ηλ

N

)
︸ ︷︷ ︸
weigth decay

w(k) − η
∂J0
∂w

Similarly for the stochastic gradient descent.

Regularization (L1)

The formula is:

J = J0 +
λ

N

∑
w

|w| =⇒ ∂J

∂w
=

∂J0
∂w

+
λ

N
sign(w)

Update for gradient descent:

w(k+1) = w(k) − η

(
∂J0
∂w

+
λ

N
sign(w(k))

)
If |w| is too large the effect of L1 is much smaller then L2 regularization. The opposite for small |w| since L1 leads
to sparsity.

58

Dropout

Idea: modify the network. Randomly delete (just for one iteration) half of the hidden neurons, make the forward
pass and backward pass through the modified network. Repeat the process many times (every time you restart from
the initial network).

In the prediction the weights are computed as averages of the weights learnt in the modified networks.

59

20 Sigmoidal functions

Definition 1. A function σ : R→ [0, 1] is called sigmoidal if

lim
x→−∞

σ(x) = 0, lim
x→∞

σ(x) = 1.

Definition 2. Let n be a natural number. We say that an activation function f : R → R is n-discriminatory if
the only signed Borel measure µ such that∫

f(y · x + θ)dµ(x) = 0, ∀y ∈ Rn, θ ∈ R,

is the zero measure.
Definition 3. We say an activation function f : R→ R is discriminatory if it is n-discriminatory for any n.
Remark 1. A discriminatory function σ is volumetrically non-destructive when it acts on linear transformations

of input.

Activation functions

Step function

σ(t) =

{
1, t ≥ 0
0, t < 0

Cons

• It cannot provide multi-value outputs—for example, it cannot be used for multiclass classification problems.

• The gradient of the step function is zero, which causes a hindrance in the backpropagation process.

Linear

σ(t) = t

Cons

• It’s not possible to use backpropagation as the derivative of the function is a constant and has no relation to
the input x.

• All layers of the neural network will collapse into one if a linear activation function is used. No matter the
number of layers in the neural network, the last layer will still be a linear function of the first layer. So,
essentially, a linear activation function turns the neural network into just one layer.

Sigmoid

σ(t) =
1

1 + exp(−t)
Pros

• It is commonly used for models where we have to predict the probability as an output. Since probability of
anything exists only between the range of 0 and 1, sigmoid is the right choice because of its range.

• The function is differentiable and provides a smooth gradient, i.e., preventing jumps in output values. This is
represented by an S-shape of the sigmoid activation function.

Cons

• As we can see from the Figure, the gradient values are only significant for range -4 to 4, and the graph gets
much flatter in other regions. It implies that for values greater than 4 or less than -4, the function will have
very small gradients. As the gradient value approaches zero, the network ceases to learn and suffers from the
Vanishing gradient problem.

• The output of the logistic function is not symmetric around zero. This makes the training of the neural network
more difficult and unstable.

60

Tanh

σ(t) =
exp(t)− exp(−t)
exp(t) + exp(−t)

Pros

• The output of the tanh activation function is Zero centered; hence we can easily map the output values as
strongly negative, neutral, or strongly positive.

• Usually used in hidden layers of a neural network as its values lie between -1 and 1; therefore, the mean for
the hidden layer comes out to be 0 or very close to it. It helps in centering the data and makes learning for
the next layer much easier.

Cons

• Also tanh faces the problem of vanishing gradients similar to the sigmoid activation function. Plus the gradient
of the tanh function is much steeper as compared to the sigmoid function. Although both sigmoid and tanh
face vanishing gradient issue, tanh is zero centered. Therefore, in practice, tanh nonlinearity is always preferred
to sigmoid nonlinearity.

ReLU

σ(t) = max(0, t)

Pros

• Since only a certain number of neurons are activated, the ReLU function is far more computationally efficient
when compared to the sigmoid and tanh functions.

• ReLU accelerates the convergence of gradient descent towards the global minimum of the loss function due to
its linear, non-saturating property.

Cons

• The negative side of the graph makes the gradient value zero. Due to this reason, during the backpropagation
process, the weights and biases for some neurons are not updated. This can create dead neurons which never
get activated. All the negative input values become zero immediately, which decreases the model’s ability to
fit or train from the data properly.

Parametric ReLU

σ(t) = max(at, t), a > 0

Parametric ReLU (PReLU) is an extension of Leaky ReLU (LReLU). While both introduce a slope for negative
values to keep the gradient alive, the key difference is that PReLU has a learnable parameter a for the slope, whereas
LReLU uses a fixed small value for a.
This learnable parameter in PReLU allows the activation function to adapt to the data during training, providing
more flexibility compared to LReLU.

Pros

• Like ReLU, Parametric ReLU (PReLU) allows for efficient computation and mitigates the vanishing gradient
problem for positive values. Additionally, it enables backpropagation for negative input values by maintaining
a non-zero gradient, preventing dead neurons.

• The parameter a is learnable, allowing the activation function to adapt to the data during training, potentially
improving model performance.

Cons

• Predictions for negative input values may be less consistent due to the learnable nature of the parameter a.

• If the learned parameter a is small, the gradient for negative values might be small, potentially making the
learning process slower for those parameters.

61

ELU (Exponential Linear Unit)

σ(t) =

{
t, t ≥ 0
α(exp(t)− 1), t < 0

Pros

• ELU becomes smooth slowly until its output equal to a whereas RELU sharply smoothes.

• Avoids dead ReLU problem by introducing log curve for negative values of input. It helps the network nudge
weights and biases in the right direction.

Cons

• It increases the computational time because of the exponential operation included

• No learning of the a value takes place

• Exploding gradient problem

Swish

σ(t) =
t

1 + exp(−βt)
, β ≥ 0

Pros

• Swish is a smooth function that means that it does not abruptly change direction like ReLU does near x = 0.
Rather, it smoothly bends from 0 towards values < 0 and then upwards again.

• Small negative values were zeroed out in ReLU activation function. However, those negative values may still
be relevant for capturing patterns underlying the data. Large negative values are zeroed out for reasons of
sparsity making it a win-win situation.

Softmax

σ(t)i =
exp(ti)∑N
j=1 exp(tj)

Pros

• It calculates the relative probabilities. Similar to the sigmoid/logistic activation function, the SoftMax function
returns the probability of each class. It is most commonly used as an activation function for the last layer of
the neural network in the case of multi-class classification.

62

21 Universal Approximation Theorem of NN

Consider an input variable x, a target variable z, and a target function denoted by z = f(x), where f belongs to a
specific function space S.

Definitions:

• In = [0, 1]n represents the n-dimensional unit hypercube.

• A subspace U of X is dense in X with respect to a norm ∥ · ∥ if for any element x ∈ X, there exists an element
u ∈ U arbitrarily close to x. Formally:

1. ∀x ∈ X, there exists a sequence un in U such that un → x as n→∞;

2. ∀x ∈ X, ∀ε > 0, there exists u ∈ U such that ∥u− x∥ < ε.

• A subspace U is not dense in X if:

1. There exists an element x0 ∈ X such that no elements u ∈ U are sufficiently close to x0;

2. There exists a δ > 0 such that ∀u ∈ U , ∥u− x0∥ ≥ δ.

• A neural network is a universal approximator for the space (S, d) if the outcome space U is d-dense in S, i.e.,

∀f ∈ S, ∀ε > 0, ∃g ∈ U : d(f, g) < ε.

This implies that for any function f ∈ S, functions in U can approximate f arbitrarily closely.

• Let K denote a compact set in Rn and let C(K) represent the set of real-valued continuous functions on K.

• M(In) is the space of finite signed regular Borel measures on In.

Theorem (Representation of Linear Bounded Functional): For any bounded linear functional F on C(K),
there exists a unique finite signed Borel measure µ on K such that

F (f) =

∫
K

f(x) dµ(x), ∀f ∈ C(K).

Moreover, ∥F∥ = |µ|(K).

21.0.1 Theorem (Hahn-Banach)

Let X be a linear real vector space and X0 a linear subspace. Given p, a linear convex functional on X, and
f : X0 → R a linear functional satisfying f(x) ≤ p(x) for all x ∈ X0, then there exists a linear functional F : X → R
such that:

1. F restricted to X0 is f ;

2. F (x) ≤ p(x) for all x ∈ X.

Remark: The Hahn-Banach theorem demonstrates the extendability of a linear functional from a subspace to
the entire space, preserving the original constraints. This extension is pivotal in studying the behavior of linear
functionals on larger spaces, which helps in understanding the structure of the subspace.

From the Hahn-Banach theorem, we derive the following lemmas.

21.0.2 Lemma 1:

Let U be a linear subspace of a normed linear space X and consider x0 ∈ X such that the distance from x0 to U is
at least δ:

dist(x0, U) ≥ δ.

Then there exists a bounded linear functional L on X such that:

i ∥L∥ ≤ 1,

ii L(u) = 0, ∀u ∈ U ,

iii L(x0) = δ.

The key intuition is that this lemma guarantees we can always find a way to ”detect” or ”measure” the separation
between a point and a subspace, no matter how complex our space might be.

63

21.0.3 Lemma 2:

If U is a linear, non-dense subspace of a normed linear space X, then there exists a bounded linear functional L on
X such that L ̸= 0 and LU = 0.

21.0.4 Lemma 3

Let U be a linear, non-dense subspace of C(In). Then there exists a measure µ ∈M(In) such that:

∫
In

h dµ = 0, ∀h ∈ U.

Proof: Considering X = C(In) in Lemma 2, a bounded linear functional L : C(In)→ R exists such that L ̸= 0
on C(In) and L|U = 0. By the representation theorem for linear bounded functionals on C(In), we find a measure
µ ∈M(In) such that:

L(f) =

∫
In

f dµ, ∀f ∈ C(In).

Specifically, for any h ∈ U :

L(h) =

∫
In

h dµ = 0,

N-Discriminatory Function: A function f : R→ R is called N-Discriminatory if the only signed Borel measure
µ such that ∫

f(y · x + θ) dµ(x) = 0 ∀y ∈ Rn, θ ∈ R

is the zero measure µ = 0.
Discriminatory Function:

A function is Discriminatory if it is N-Discriminatory for any n.

Volumetrically Non-Destructive:
A discriminatory function is volumetrically non-destructive if it maintains the information content when it acts on
linear transformations of the input.

21.0.5 Finite sum of continuous discriminatory function is dense

Let σ be any continuous discriminatory function. Then the finite sums of the form

G(x) =

N∑
j=1

αjσ
(
wT

j x + θj
)

wj ∈ Rn, αj , θj ∈ R

are dense in C (In).
Proof: Since σ is continuous, it follows that

U =

G;G(x) =

N∑
j=1

αjσ
(
wT

j x + θj
) .

is a linear subspace of C (In). We continue the proof adopting the contradiction method.
Assume that U is not dense in C (In) i.e. we assume that the closure of U, which we call R is not all C(In). R

is a closed proper subspace of C(In).
By the H-B Theorem there is a bounded linear functional on C(In) (call it L) with the property that L ̸= 0 but

L(R) = L(S) = 0.
By the Representation Theorem L is of the form

L(h) =

∫
In

h(x)dµ(x)

for some µ ∈M(In), for all h ∈ C(In).
In particular since σ(wTx + θ) is in R for all w and θ, we must have

64

∫
In

σ(wTx + θ)dµ(x) = 0.

However we have assumed that σ was discriminatory so this implies µ = 0 which contradicts our assumption;
hence S must be dense in C(In).We found that µ must be zero due to the discriminatory property of σ. However, if
µ = 0, then L must be the zero functional, which contradicts our initial assumption that L is non-zero.

Definition. Let

• Pw,θ =
{
x;wTx + θ = 0

}
the hyperplane with normal vector w and (n + 1)-intercept θ;

• H+
w,θ = Hw,θ =

{
x;wTx + θ > 0

}
the positive half-space;

• H−
w,θ =

{
x;wTx + θ < 0

}
the negative half-space.

Lemma 4. Let µ ∈ M(In). If µ vanishes on all hyperplanes and open half-spaces in Rn then µ is zero. More
precisely if

µ(Pw,θ) = 0, µ(Hw,θ) = 0, ∀w ∈ Rn, θ ∈ R,

then µ = 0.

21.1 Continuous Sigmoidal Functions are discriminatory.

Any continuous sigmoidal function is discriminatory for all measures µ ∈M(In).
Proof. Let µ ∈M(In) be a fixed measure. Choose a continuous sigmoidal function that satisfies∫

In

σ(wTx + θ)dµ(x) = 0, ∀w ∈ Rn, θ ∈ R (1).

We need to show that µ = 0. First, construct the continuous function

σλ(x) = σ
(
λ
(
wTx + θ

)
+ ϕ

)
for given w, θ and ϕ, and use the definition of a sigmoidal to note that

lim
λ→∞

σλ(x) =

 1, if wTx + θ > 0
0, if wTx + θ < 0
σ(ϕ), if wTx + θ = 0

Define the bounded function

γ(x) =


1, if x ∈ H+

w,θ

0, if x ∈ H−
w,θ

σ(ϕ), if x ∈ Pw,θ

and notice that σλ(x)→ γ(x) pointwise on R, as λ→∞. The Bounded Convergence Theorem allows switching
the limit with the integral, obtaining

lim
λ→∞

∫
In

σλ(x)dµ(x) =

∫
In

γ(x)dµ(x)

=

∫
H+

w,θ

γ(x)dµ(x) +

∫
H−

w,θ

γ(x)dµ(x) +

∫
Pw,θ

γ(x)dµ(x)

= µ
(
H+

w,θ

)
+ σ(ϕ)µ (Pw,θ)

Sinc ewe ar asusming: σλ(x)dµ(x) = 0, and hence the limit in previous left term vanishes. Consequently, the
right term must also vanish, fact that can be written as

µ
(
H+

w,θ

)
+ σ(ϕ)µ (Pw,θ) = 0.

Since this relation holds for any value of ϕ, taking ϕ→ +∞ and using the properties of σ, yields

65

µ
(
H+

w,θ

)
+ µ (Pw,θ) = 0.

Similarly, taking ϕ→ −∞, implies

µ
(
H+

w,θ

)
= 0, ∀w ∈ Rn, θ ∈ R. (2)

Note that, as a consequence of the last two relations, we also have µ(Pw,θ) = 0 . Since H+
w,θ = H−

−w,−θ, relation
(2) states that the measure µ vanishes on all half-spaces of Rn. Lemma 4 states that a measure with such properties
is necessarily the zero measure, µ = 0. Therefore, σ is discriminatory

21.1.1 Relu is 1-Discriminatory

The ReLU function is 1-discriminatory.
Proof. Let µ be a signed Borel measure, and assume the following holds for all y ∈ R and θ ∈ R :∫

ReLU(yx + θ)dµ(x) = 0

We want to show that µ = 0. For that, we will construct a sigmoid bounded, continuous (and therefore Borel
measurable) function from subtracting two ReLU functions with different parameters. In particular, consider the
function

f(x) =

 0 if x < 0
x if x ∈ [0, 1]
1 if x > 1

Then any function of the form g(x) = f(yx + θ) with y ̸= 0 can be described as

g(x) = ReLU (yx + θ1)−ReLU (yx + θ2)

by setting θ1 = −θ/y and θ2 = (1− θ)/y. If y = 0, then instead set

g(x) = f(θ) =

{
ReLU(f(θ)) if f(θ) ≥ 0
−ReLU(−f(θ)) if f(θ) ≤ 0

Which means that for any y ∈ R, θ ∈ R

∫
f(yx + θ)dµ(x) =

∫
(ReLU (yx + θ1)−ReLU (yx + θ2)) dµ(x)

=

∫
ReLU (yx + θ1) dµ(x)−

∫
ReLU (yx + θ2) dµ(x)

= 0− 0 = 0

By the previous lemma, since f is sigmoidal is also discriminatory, and therefore, µ = 0.
Definition. For f : R→ R an activation function we define:

Σn(f) = span {f(y · x + θ)|y ∈ Rn, θ ∈ R} .

If Σ1(f) is dense in C([0, 1]), then Σn(f) is dense in C([0, 1]n).

Consider any function h ∈ C([0, 1]n) and any ε > 0. Our goal is to approximate h using functions from Σn(f).
Since the span of the set {g(a ·x) | a ∈ Rn, g ∈ C([0, 1])} is dense in C([0, 1]n), there exist functions gk ∈ C([0, 1])

and vectors ak ∈ Rn such that: ∣∣∣∣∣h(x)−
N∑

k=1

gk(ak · x)

∣∣∣∣∣ < ε

2
.

By the assumption that Σ1(f) is dense in C([0, 1]), for each function gk, there exists a sum of functions from
Σ1(f) such that: ∣∣∣∣∣gk(ak · x)−

Nk∑
i=1

f(yk,i · x + θk,i)

∣∣∣∣∣ < ε

2N
.

Here N is the total number of functions gk used, ensuring that the approximation error for each gk remains small
relative to N .

66

Applying the Triangle Inequality we now combine these approximations:∣∣∣∣∣h(x)−
N∑

k=1

Nk∑
i=1

f(yk,i · x + θk,i)

∣∣∣∣∣ ≤
∣∣∣∣∣h(x)−

N∑
k=1

gk(ak · x)

∣∣∣∣∣+

∣∣∣∣∣
N∑

k=1

gk(ak · x)−
N∑

k=1

Nk∑
i=1

f(yk,i · x + θk,i)

∣∣∣∣∣
<

ε

2
+

N∑
k=1

ε

2N

=
ε

2
+

ε

2
= ε.

In the second term, each gk(ak · x) is approximated by a sum involving f , contributing an error of less than ε
2N for

each k, which sums up to less than ε
2 across all k.

This demonstrates that we can approximate any function h ∈ C([0, 1]n) arbitrarily closely using functions from
Σn(f), thereby proving that Σn(f) is dense in C([0, 1]n).

22 Complexity of NN

• Wn
m: class of n-variable functions with partial derivatives up to m-th order

• Wn,2
m ⊂Wn

m: compositional subclass following binary tree structure

Theorem. Let σ : R → R be infinitely differentiable, and not a polynomial. For f ∈ Wn
m the complexity of

shallow networks that provide accuracy at least ε is N = O
(
ε−n/m

)
and is the best possible.

Theorem. For f ∈ Wn,2
m consider a deep network with the same compositonal architecture and with an acti-

vation function σ : R → R which is infinitely differentiable, and not a polynomial. The complexity of the network
to provide approximation with accuracy at least ε is

N = O
(

(n− 1)ε−2/m
)
. (11)

Theorem. Let f be a L-Lipshitz continuous function of n variables. Then, the complexity of a network which
is a linear combination of ReLU providing an approximation with accuracy at least ε is

Ns = O

((ε

L

)−n
)

wheres that of a deep compositional architecture is

Nd = O

(
(n− 1)

(ε

L

)−2
)
.

23 Physics Informed Neural Networks (PINNs)

Setting of the problem: consider Ω ⊂ Rd and a PDE parametrized by λ for the solution u(x):

f

(
x;

∂u

∂x1
, . . . ,

∂u

∂xd
;

∂2u

∂x1∂x1
, . . . ,

∂2u

∂x1∂xd
, . . . ,

∂2u

∂xd∂xd
;λ

)
= 0, x ∈ Ω

And B(u, x) = 0 on the boundary ∂Ω. For time-dependent problems t is considered as a special component of x and
Ω contains also the temporal domain. The IC are treated as a special type of Dirichlet BC on the spatio-temporal
domain. The training set is:

T = x1, x2, . . . , x|T | of size |T |

67

Residual points:
Tf ⊂ Ω and |Tb ⊂ ∂Ω

Then, we have:
L(θ; T) = wfLf (θ; Tf) + wbLb(θ; Tb)

Where

Lf (θ; Tf) =
1

|Tf |
∑
x∈Tf

∥∥∥∥f (x;
∂u

∂x1
, . . . ,

∂u

∂xd
;

∂2u

∂x1∂x1
, . . . ,

∂2u

∂x1∂xd
, . . . ,

∂2u

∂xd∂xd
;λ

)∥∥∥∥2
2

Lb(θ; Tb) =
1

|Tb|
∑
x∈Tb

∥B(u, x)∥22

The actual PINN algorithm:

Errors

We define:

• F : family of all functions that can be represented by the chosen NN

• uF = arg minf∈F ∥f − u∥: best function in F close to u

• uT = arg minf∈F L(θ; T): solution given by the NN when the loss is at global minimum

• ũT = approximate solution returned by the optimizer

• εapp: measures how closely uF can approximate u

• εgen: is determined by the number and locations of residual points and by the capacity of the family F

• εopt: is due to the loss function complexity and the optimization setup (learning rate, number of iterations,
. . .)

ε := ∥ũT − u∥ ≤ ∥ũT − uT ∥︸ ︷︷ ︸
εopt

+ ∥uT − uF∥︸ ︷︷ ︸
εgen

+ ∥uF − u∥︸ ︷︷ ︸
εapp

68

Comparison between PINN and FEM:

NS cylinder ∇ · u = 0 x ∈ Ω, t ∈ (0, T]
∂u

∂t
− ν∇2u + (u · ∇)u +∇p = f x ∈ Ω, t ∈ (0, T]

PINNs for inverse problems

Inverse problem: presence of unknown parameters λ and some extra information on points Ti ⊂ Ω:

I(u, x) = 0 for x ∈ Ti

L(θ, λ; T) = wfLf (θ, λ; Tf) + wbLb(θ, λ; Tb) + wiLi(θ, λ; Ti)

Where

L(θ, λ; Ti) =
1

|Ti|
∑
x∈Ti

∥I(û, x)∥22

69

24 Appendix

Functional Analysis

A real vector space VV is a set with operations +:V×V→V+ : V ×V → V and : RV ßV · : R× V → V suchthat :

• u+v=v+uu + v = v + u (commutativity of vector addition)

• (u+v)+w=u+(v+w)(u + v) + w = u + (v + w) (associativity of vector addition)

• There exists an element 0V0 ∈ V suchthatv+0 = vv+0 = vforallvV v ∈ V (existenceofzerovector)ForeveryvV v ∈
V, thereexistsanelementvV − v ∈ V suchthatv + (v) = 0v + (−v) = 0(existenceofadditiveinverses)

•• (u+v)=u+vλ ·(u+v) = λ ·u+λ ·v(distributivityofscalarmultiplicationovervectoraddition)(+)v = v+v(λ+µ) ·v =
λ · v + µ · v(distributivityofscalarmultiplicationoverrealaddition)

•• ()v=(v)(λµ) · v = λ · (µ · v)(associativityofscalarmultiplication)1 ·v = v (scalar multiplication identity)

Examples of real vector spaces are: Rn, PK(I): set of polynomials of order ≤ K on the interval I, Ck(I): set of
functions with k continuous derivatives on the interval I.

A basis for the vector space V is the minimal set of vectors (basis function) that span V . The basis functions
must be linearly independent and the number of basis functions is the dimension of the vector space. Any vector
v ∈ V can be written as a linear combination of the basis functions:

v = c1ϕ1 + c2ϕ2 + · · ·+ cnϕn

Example: the dimension of PK)I = is K + 1 and the basis functions are {1, x, x2, . . . , xK}.

Let V be a vector space over R. An inner product (,) is a function V × V → R with the following properties:

•1. ∀u ∈ V, (u, u) ≥ 0 and (u, u) = 0 ⇐⇒ u = 0

2. ∀u, v ∈ V, (u, v) = (v, u)

3. ∀u, v, w ∈ V and ∀α, β ∈ R, (αu + βv,w) = α(u,w) + β(v, w)

V together with (,) is called an inner product space.

Example: Given two vectors in R2 : v = v1e1 + v2e2 and w = w1e1 +w2e2, the Euclidean inner product in R2 is:

(v, w) = v1w1 + v2w2

The extension to Rn is obvious.

Example: An inner product in the vector space of continuous functions in [0,1] (C([0, 1])) is:

(f, g) =

∫ 1

0

f(x)g(x)dx

where f, g ∈ C([0, 1]).

Example: An inner product in the vector space of functions with one continuous derivative in [0,1] (C1([0, 1]))
is:

(f, g) =

∫ 1

0

f(x)g(x) + f ′(x)g′(x)dx

where f, g ∈ C1([0, 1]).

Remark: an inner product induces a norm ∥f∥ =
√

(f, f).

A norm on a vector space V is a mapping ∥ · ∥ : V → R that satisfies:

1. ∥u∥ ≥ 0 and ∥u∥ = 0 ⇐⇒ u = 0

2. ∥αu∥ = |α|∥u∥

70

3. ∥u + v∥ ≤ ∥u∥+ ∥v∥

This is valid ∀u, v ∈ V and ∀α ∈ R.
A normed vector space is a vector space equipped with a norm.

• Norms in Rn:

∥v∥p =

(
n∑

i=1

|vi|p
)1/p

∥v∥1 =

n∑
i=1

|vi| ∥v∥∞ = max
i=1,...,n

|vi|

• Norms in C0(I) and PK(I):

∥v∥Lp(I) =

(∫
I

|v|pdx
)1/p

∥v∥L∞(I) = sup
x∈I
|v(x)|

A bilinear form on a vector space V is mapping a a(·, ·) = V × V → R such that:

• a(u + v, w) = a(u,w) + a(v, w)

• a(u, v + w) = a(u, v) + a(u,w)

• a(λu, v) = λa(u, v)

• a(u, λv) = λa(u, v)

This is valid ∀u, v, w ∈ V and ∀λ ∈ R. The bilinear form is symmetric if a(u, v) = a(v, u) ∀u, v ∈ V and continuous,
or bounded, if there is a constant C such that |a(u, v)| ≤ C∥u∥∥v∥ ∀u, v ∈ V .

A symmetric bilinear form a(·, ·) is called an inner product if a(u, u) ≥ 0 with equality if and only if u = 0 ∀u ∈ V .
Inner products are often also denoted (·, ·). An inner product defines a so-called induced norm by:

∥u∥2 = (u, u)

on the vector space V . In particular, a(·, ·) defines the induced energy norm ∥|u∥|2 = a(u, u). A vector space equipped
with an inner product is called an inner product space. In such spaces the Cauchy-Schwarz inequality:

|(u, v)| ≤ ∥u∥∥v∥

holds for all u, v ∈ V .

A Cauchy sequence in a normed vector space V is a sequence {vi}∞i=1 of elements vi ∈ V such that

∀ϵ > 0 ∃N ∈ N such that ∥vi − vj∥ < ϵ ∀i, j ≥ N

A normed vector space is called complete if every Cauchy sequence in V converges to an element in V .

Remark: a convergent sequence is a Cauchy sequence. The converse is not true. Indeed, there are Cauchy
sequences that do not converge in their space. For example, the sequence of rational numbers (un)n∈N ∈ Q given by:

un =
1

0!
+

1

1!
+ · · ·+ 1

n!

is Cauchy in Q but converges to the constant e, which belongs to R but not to Q.

Definition: a vector space is said to be complete if every Cauchy sequence is also convergent.

Definition: a Banach space is a complete normed vector space.

Definition: a Hilbert space is a complete inner product space.

71

Riemann integral

For a function to be Riemann integrable, the infimum of the upper Riemann sum and the supremum of the lower
Riemann sum should be the same.

mk = inf{f(t) : xk−1 ≤ t ≤ xk} Mk = sup{f(t) : xk−1 ≤ t ≤ xk}

L(f, P) =

N∑
k=1

mk(xk − xk−1) U(f, P) =

N∑
k=1

Mk(xk − xk−1)

Is Riemann integral ok? Consider:

1Q =

{
1 x ∈ Q
0 x /∈ Q

In this case: L(f, P) = 0 ̸= 1 = U(f, P). So the function is not Riemann integrable.

Lebesque integral

Is defined as follows: ∫
R
ϕdm :=

n∑
i=1

aim(Si)

Here, instead of having a partition of the interval, we have a partition of the set. The function ϕ is the characteristic
function of the set Si and ai is the value of the function in the set Si. We are still computing a ”rectangular”
area but this time the base is not fixed to a certain ”dx” (or ∆x) but it is the measure of the set Si

which can be large. The total area is not computed by stacking side to side small and tall rectangulars
but by stacking on over the other larger and shorter (of height a)rectangulars.

Of course, as it was done in Riemann integral, you will reach a better approximation of the area by considering
thinner and thinner layers of rectangulars. We need to define the concept of ”measure”!

Theorem: every countable set has measure 0.

72

The integral with Lebesque is easy: 1 × S1 + 0 × S2 where S1 is the set of all irrational numbers in [0,1] and
S2 is the set of rational numbers. S2 is countable so µ(S2) = 0 moreover since S1 and S2 are disjoint we have
µ([0, 1]) = 1 =⇒ µ(S1) = µ([0, 1]− µ(S2)) = 1− 0 = 1. So the integral is 1!

Remark: if a function is Riemann integrable then it is also Lebesque integrable and the two integrals coincide.
The converse is not true.

With the Lebesque integral we can define the Lp spaces:

Lp(|Ω) = {v : Ω→ R : ∥v∥Lp(Ω) <∞}

So the space Lp is the set of functions which have norm which is bounded. The norm is defined as:

∥v∥Lp(Ω) =

(∫
Ω

|v|pdm
)1/p

With 1 ≤ p ≤ ∞. In particular, if p =∞ we have:

∥v∥L∞(Ω) = sup
x∈Ω
|v(x)|

Remark: the Lp(Ω) spaces are Banach spaces for 1 ≤ p ≤ ∞.

Remark: The space L2(Ω) is a Hilbert space, as its norm ∥v∥L2(Ω) is induced by the inner product (v, w)L2(Ω) =∫
Ω
vw dx. However, for p ̸= 2, the space Lp(Ω) is only a Banach space, as its norm ∥v∥Lp(Ω) is not induced by an

inner product.

In the picture there is also C(Ω) which corresponds to the set of continuous functions in Ω. Ω̄ is the closure of Ω.

Suppose have this differential problem: {
−u′′(x) = f(x) x ∈ (0, 1)

u(0) = u(1) = 0

This, for example, is a model for an elastic string and f is some sort of external force applied to it. We have 3
different external forces as shown in the figure here:

73

In the first case the force is all concentrated in the point 0.5, in the second case the force is distributed in the two
points 0.4 and 0.6 while in the third case the force is distributed in the whole interval.In the bottom of the picture
there are the solutions of the three problems. But, as you can see, the functions u(x) are not differentiable.

There is a contraddiction: the physical problem admits a solution which is not coherent with the regularity re-
quired by the differential problem. We have to rethink the definition of derivative, we have to introduce the concept
of weak derivative.

Weak derivatives

Functions in Hilbert spaces are not regular enough for the standard definition of derivative to make sense.

• Ck(Ω): space of all k <∞ times continuously differentiable functions in Ω.

• D(Ω) = {φ ∈ C∞(Ω)with compact support in Ω}

• α = (α1, . . . , αd) is a multi-index, i.e. d-tuple of non negative integers

• |α| = α1 + · · ·+ αd =
∑d

i=1 αi: order of the multi-index

• Dαϕ =
d∏

i=1

(
∂

∂xi

)αi

φ, φ ∈ D(Ω)

So, if we have to compute ∂u
∂xi

we can:∫
Ω

∂u

∂xi
φdx = −

∫
Ω

u
∂φ

∂xi
dx ∀φ ∈ D(Ω), for any u ∈ C1(Ω)

We multiply by φ which is an infinitely regular function then by integration by parts and by noticing that φ has
compact support so it is 0 outside a certain interval we can rewrite the integral and the derivative of u has been
transfered over φ which is regular enough to take all the derivatives that you want. If you iterate this you can define:∫

Ω

(Dαu)φdx = (−1)|α|
∫
Ω

u(Dαφ)dx ∀φ ∈ D(Ω), for any u ∈ C |α|(Ω)

In practice, we usually define the following space which is the set of functions v which are in L1(K) where K is a
subset of Ω on which the function is different than 0 inside and equal to 0 outside:

L1
loc(Ω) = {v : v ∈ L1(K) ∀K compactly supported in Ω}

Let u ∈ L1
loc(Ω) (function u that belongs to that set), if there is a function g ∈ L1

loc(Ω) such that:∫
Ω

gφdx = (−1)|α|
∫
Ω

u(Dαφ)dx ∀φ ∈ D(Ω)

then we say that g is the weak derivative Dαu of u. So, essentially, apart from the formalism, the idea is that the
weak derivative amounts to take the derivative you want to compute, multiply by a function which is regular enough,
apply many times (α in general) the integration by parts and, due to the fact that the function φ is compactly
supported, then you can end up with the final relation.

Remark: weak and classical derivatives share many properties, such as linearity, the chain rule and the differ-
entiation of products, for instance.

74

	Row-reduced echelon form
	Factorizations
	Null spaces
	Eigenvalues and eigenvectors
	Singular Value Decomposition (SVD)
	PCA
	Least Squares Approximation
	Matrix completion
	Page Rank
	Lasso Regression
	Kernel Methods
	Automatic Differentiation
	Convolution
	Discrete Fourier Transform
	Optimization in Neural Networks
	Convergence Analysis
	Convergence Theorem for Lipschitz Convex Functions
	Decreasing Condition Lemma
	Convergence Theorem for Smooth Functions

	Accelerated Gradient Descent
	Stochastic Gradient Descent (SGD)
	Equivalent Statements
	Simple convergence results for SGD

	Newton's Method
	Quasi-Newton method
	Symmetric rank 1 updates
	BFGS

	Cross-Entropy Function
	Sigmoidal functions
	Universal Approximation Theorem of NN
	Theorem (Hahn-Banach)
	Lemma 1:
	Lemma 2:
	Lemma 3
	Finite sum of continuous discriminatory function is dense

	Continuous Sigmoidal Functions are discriminatory.
	Relu is 1-Discriminatory

	Complexity of NN
	Physics Informed Neural Networks (PINNs)
	Appendix

