
1

Numerical Linear Agebra

From lessons by Paola Antonietti
Luigi Pagani

Polytechnic University of Milan
A.Y. 2023/2024

Disclaimer.
This document contains the lecture notes for the course on numerical linear algebra,
taught by Professor Paola Antonietti at Polytechnic University of Milan during the
2023/24 academic year, with minor additions and modifications. The intellectual
property remains with the aforementioned professor, who has not reviewed this doc-
ument. It is intended solely as a supplementary resource for the lectures, created by
students for students, without any claims to replace official textbooks or attendance
in the lectures. These notes are taken from the lectures and most of the illustrations
are based on the professor’s drawings and slides, to whom the intellectual property
also belongs.

The most up-to-date version of these notes is always available at this link.
Revised on June 22, 2024

https://www.overleaf.com/read/yqysrsbvccht#946a7e2

2

Contents

1 Introduction 5

2 Iterative Methods 11

3 Elements of Multigrid 35

4 Algebraic Multigrid Methods 47

5 Domain Decomposition Methods 57

6 Direct methods for sparse linear systems 63

7 Eigenvalue problems 73

8 Overdetermined linear systems 85

3

4 CONTENTS

Chapter 1

Introduction

Matrix Multiplication - Useful Properties

1. Multiplication by the identity changes nothing. Example: A ∈ Rn×m, then
InA = A = AIm

2. Associativity A(BC) = (AB)C

3. Distributivity A(B +D) = AB +AD

4. No commutativity AB ̸= BA

5. Transpose of product (AB)T = BTAT

Matrix Powers

1. For A ∈ Rn×n with A ̸= 0

A0 = In Ak = A · · ·A︸ ︷︷ ︸
k times

= AAk−1 k ≥ 1

2. A ∈ Rn×n is

• idempotent (projector) if A2 = A

• nilpotent if Ak = 0 for some integer k ≥ 1

Inverse

• A ∈ Rn×n is nonsingular (invertible), if exists A−1 such that:

AA−1 = In = A−1A

• Inverse and transposition is interchangeable: A−T def
=
(
AT
)−1

=
(
A−1

)T .

• Inverse of product. For A,B ∈ Rn×n: (AB)−1 = B−1A−1..

• Remark. If 0 ̸= x ∈ Rn and Ax = 0, then A is singular

5

6 CHAPTER 1. INTRODUCTION

Orthogonal Matrices

A ∈ Rn×n invertible. A is an orthogonal matrix if A−1 = AT :

ATA = In = AAT .

Triangular Matrices

1. Upper triangular matrix ∇:

U =


u1,1 a1,2 . . . u1,n
0 u2,2 . . . u2,n
...
0 0 . . . un,n


U is nonsingular if and only if uii ̸= 0, i = 1, . . . , n.

2. Lower triangular matrix △:

L =


ℓ1,1 0 . . . 0
ℓ2,1 ℓ2,2 . . . 0
...
ℓn,1 ℓn,2 . . . ℓn,n


L is nonsingular if and only if ℓii ̸= 0, i = 1, . . . , n.

Unitary Triangular Matrices

1. Unitary Upper triangular matrix ∇:

U =


1 a1,2 . . . u1,n
0 1 . . . u2,n
...
0 0 . . . 1


2. Unitary Lower triangular matrix △:

L =


1 0 . . . 0
ℓ2,n 1 . . . 0
...
ℓn,1 ℓn,2 . . . 1



7

Basic Matrix Decompositions

Gaussian Elimination (LU) with (partial) pivoting

If A ∈ Rn×n non-singular then:

PA = LU

• P is a permutation matrix.

• L is unit lower triangular.

• U is upper triangular.

It is possible to find the solution to the following linear system with the following
three steps.

Ax = b

1. Factor PA = LU (Expensive part: O
(
n3
)

flops).

2. Solve Ly = Pb (△ system, O
(
n2
)

flops).

3. Solve Ux = y (∇ system, O
(
n2
)

flops).

Cholesky Decomposition

If A ∈ Rn×n is symmetric (AT = A) and positive definite, i.e.

zTAz > 0 for all z ̸= 0

it is possible to decompose the matrix in the following way:

A = LTL.

L is lower triangular (with positive entries on the diagonal). It is possible to find the
solution to the following linear system with the following three steps.

Ax = b

1. Factor A = LTL (Expensive part: O
(
n3
)

flops).

2. Solve LTy = b (△ system, O
(
n2
)

flops).

3. Solve Lx = y (∇ system, O
(
n2
)

flops).

8 CHAPTER 1. INTRODUCTION

QR Decomposition

If A ∈ Rn×n non-singular then:

A = QR

• Q is an orthogonal.

• R is upper triangular.

It is possible to find the solution to the following linear system with the following
three steps:

Ax = b

1. Factor A = QR (Expensive part: O
(
n3
)

flops).

2. Multiply c = QTb
(
O
(
n2
)

flops).

3. Solve Rx = c (△ system, O
(
n2
)

flops).

Determinant Properties

If T ∈ Rn×n is ∇ or △ then:

det(T) =
n∏

i=1

ti,i

1. Let A,B ∈ Rn×n then det(AB) = det(A) det(B).

2. Let A ∈ Rn×n, then det
(
AT
)
= det(A).

3. Let A ∈ Rn×n,det(A) ̸= 0⇐⇒ A is non singular.

4. Computation. Let A ∈ Rn×n be non singular.

A. Factor PA = LU

B. det(A) = ±det(U) = ±u1,1 . . . un,n

Sparse Matrices

A sparse matrix is a matrix in which most of the elements are zero, roughly speak-
ing the number of non-zero entries of A, is O(n). Most matrices arising from real
applications are sparse.

We wish to solve:
Ax = b

where A is sparse (often it comes from the discretisation of partial differential equa-
tions).
Iterative methods only use A in context of matrix-vector product. It is only needed
to provide matrix-vector product to solvers. If storing A, it is convenient to exploit
its sparse structure.

9

Storage schemes

It more efficient to store only the non-zero entries of a sparse matrix, along with
their locations. This reduces the data size from O

(
n2
)

to O(nnz), where nnz is the
number of non-zero entries. For finite stencils, which often arise from mesh-based
discretisation, this approach can asymptotically save O(n) in storage. Therefore,
common sparse storage types are often used to take advantage of this property.

Name Easy insertion Fast Ax
Coordinate (COO) Yes No
CSR No Yes
CSC No Yes
ELLPACK No Yes

Coordinate format (COO)

The data structure consists of three arrays of length nnz(A):

• AA: all the values of the nonzero elements of A in any order.

• JR: integer array containing their row indices.

• JC: integer array containing their column indices.

Coordinate Compressed Sparse Row (CSR) format

If the elements of A are listed by row, the array JC might be replaced by an array
that points to the beginning of each row.

• AA: all the values of the nonzero elements of A, stored row by row from 1, . . . , n.

• JA: contains the column indices.

• IA: contains the pointers to the beginning of each row in the arrays A and JA.
Thus IA(i) contains the position in the arrays AA and JA where the i− th
row starts. The length of IA is n + 1, with IA(n + 1) containing the number
A(1) + nnz(A).

10 CHAPTER 1. INTRODUCTION

Well-posed linear system

A problem is well posed if it admits a unique solution which depends with continuity
on the data.

Consider the linear system Ax = b, where x and b are two vectors in Rn, while
A is the matrix (n × n) of the real coefficients of the system. Suppose that A is
nonsingular; in such a case x is the unknown solution x, while the data d are the
right-hand side b and the matrix A, that is, d = {bi, aij , 1 ≤ i, j ≤ n}.
If A is well conditioned, solving the linear system Ax = b is a stable problem with
respect to perturbations of the right-hand side b.

Chapter 2

Iterative Methods

In this chapter, we will study iterative methods for solving linear systems of equa-
tions, of the following form:

Ax = b

with, A ∈ Rn×n, b ∈ Rn and x ∈ Rn.
In general, direct methods (i.e., methods based on a "manipulation" of A ") are not
suitable whenever:

• n is large. Except for selected cases, the typical cost of direct methods scale
as n3.

• A is sparse. Direct methods suffer from fill-in phenomenon (see later). Sparse
matrices arise in many application problems, for example the approximation
with Finite Elements or Finite Differences of partial differential equations.

Definition of a sparse matrix A

Let A ∈ Rn×n, we say that A is sparse the number of non-zero elements (nnz(A)) is
roughly equal to the number of rows/columns n, i.e. nnz(A) ∼ n

11

12 CHAPTER 2. ITERATIVE METHODS

A sparse matrix obtained when solving a finite element problem in two dimensions.
The non-zero elements are shown in black.

Example of a sparse matrix systems

Let us consider the following differential problem:{
−u′′(x) = f(x) x ∈ (0, 1)

u(0) = u(1) = 0

which describes (for example) the displacement of an elastic body constrained to the
extremes under the action of a force f(x).

Computational domain discretization.

In each node xj we can write the following approximate problem, obtained by ap-
proximating the second derivative and introducing the numerical solution uj

−uj+1 − 2uj + uj−1

h
= f (xj)

13

It is easy to verify that the previous set of equations is a linear system:

A =


2 −1 0 0 · · · 0
−1 2 −1 0 · · · 0
0 −1 2 −1 · · · 0
...

.
...

0 · · · 0 0 −1 2

 b = h2


f (x1)

...
f (xj)

...
f (xn)


Definition of iterative methods

We introduce a sequence x(k) of vectors determined by a recursive relation that
identifies the method. In order to "initialise" the iterative process, it is necessary
to provide a starting point (initial vector) x(0) based, for example, on example on
physical or engineering considerations: x(0) −→ x(1) −→ . . .x(k) −→ x(k+1) −→
For the method to make sense, it must satisfy the convergence property:

lim
k→+∞

x(k) = x.

Convergence must not depend on the choice of x(0).

What do we expect from the accuracy of an iterative
method?

Since convergence is only guaranteed after an infinite number of iterations, from a
practical point of view we will have to stop the iterative process after a finite number
of iterations, when we believe we have arrived "sufficiently close" to the solution.
For the choice of specific stopping criteria, see below.

The Jacobi method

Let’s start from the i-th line of the linear system:

n∑
j=1

aijxj = bi → ai1x1 + ai2x2 + . . .+ ainxn = bi

Formally the solution xi for each i is given by: xi =
bi−

∑
j ̸=i aijxj

aii
.

Obviously the previous identity cannot be used in practice because we do not know
xj , for j ̸= i.
However, we could think of introducing an iterative method that updates x(k+1)

i at
step k + 1 using the others x(k)j obtained in the previous step k.

x
(k+1)
i =

bi −
∑

j ̸=i aijx
(k)
j

aii
∀i = 1, . . . , n

14 CHAPTER 2. ITERATIVE METHODS

In general, each iteration costs ∼ n2 operations, so the Jacobi method is competitive
if the number of iterations is less than n.
If A is sparse matrix, then the cost is only ∼ n flops per iteration.
It should be noted that the solutions x(k+1)

i can be computed in a fully parallelized
fashion.

The Gauss Seidel method

Let’s start from Jacobi’s method:

x
(k+1)
i =

bi −
∑

j ̸=i aijx
(k)
j

aii

At iteration (k + 1), let’s consider the computation of x(k+1)
i . We observe that for

j < i(i ≥ 2), x
(k+1)
j is known (we have already calculated it). We can therefore think

of using the quantities at step (k + 1) if j < i and (as in the Jacobi method) those
at the previous step k if j > i:

x
(k+1)
i =

bi −
∑

j<i aijx
(k+1)
j −

∑
j>i aijx

(k)
j

aii

The computational costs are comparable to those of the Jacobi method.
Unlike Jacobi method, GS method is not fully parallelizable.

Linear iterative methods Ax = b

In general, we consider linear iterative methods of the following form:

x(k+1) = Bx(k) + f k ≥ 0

where B ∈ Rn×n, f ∈ Rn. B is called iteration matrix. Its choice (together with that
of f) uniquely identify the method. How to choose B ∈ Rn×n, f ∈ Rn ?

Consistency

If x(k) is the exact solution x, then x(k+1) is again equal to x (no update if the exact
solution is found).

x = Bx+ f → f = (I −B)x = (I −B)A−1b

The former identity gives a relationship between B and f as a function of the data.
It provides a necessary condition for convergence.

Convergence

Let us introduce the error at step (k+1) : e(k+1) = x− x(k+1) and a suitable vector
norm ∥ · ∥ (for example the Euclidean norm). Then we have:∥∥∥e(k+1)

∥∥∥ =
∥∥∥x− x(k+1)

∥∥∥ =
∥∥∥x−Bx(k) − f

∥∥∥ =←− consistency

=
∥∥∥x−Bx(k) − (I −B)x

∥∥∥ =
∥∥∥Be(k)

∥∥∥ ≤
≤ ∥B∥

∥∥∥e(k)∥∥∥

15

Note that ∥B∥ is the matrix norm induced by the vector norm ∥ · ∥ By recursion we
obtain ∥∥∥e(k+1)

∥∥∥ ≤ ∥B∥∥B∥ ∥∥∥e(k−1)
∥∥∥ ≤

≤ ∥B∥∥B∥∥B∥
∥∥∥e(k−2)

∥∥∥ ≤ . . . ≤ ∥B∥k+1
∥∥∥e(0)∥∥∥

lim
k→∞

∥∥∥e(k+1)
∥∥∥ ≤ (lim

k→∞
∥B∥k+1

)∥∥∥e(0)∥∥∥
If ||B|| < 1 =⇒ limk→∞

∥∥e(k+1)
∥∥ = 0. This is a sufficient condition for convergence.

ρ(B) = max
j
|λj(B)|

Remark. If B is SPD, then ρ(B) = ∥B∥2.

Property. Let C ∈ Rn×n then ρ(C) = inf{∥C∥ ∀ induced matrix norm ∥ · ∥}.

From the aforementioned property, it follows that:

ρ(B) ≤ ∥B∥ ∀ induced matrix norm ∥ · ∥

Theorem (necessary and sufficient condition for convergence)

A consistent iterative method with iteration matrix B converges if and only if ρ(B) <
1.

Remark. Thanks to the same property we can observe that if:

∃ || · || such that ∥B∥ < 1 =⇒ ρ(B) < 1 (and thus convergence).

Let

• D : the diagonal part of A

• −E : lower triangular part of A

• −F : upper triangular part of A

A =


. . . −F

D

−E . . .

 .
The Jacobi method can be rewritten as:

Dx(k+1) = (E + F)x(k) + b

Its iteration matrix is given by:

BJ = D−1(E + F) = D−1(D −A) = I −D−1A

16 CHAPTER 2. ITERATIVE METHODS

For the Gauss-Seidel method we have:

(D − E)x(k+1) = Fx(k) + b

The iteration matrix is given by:

BGS = (D − E)−1F

A =


. . . −F

D

−E . . .

 .
The proof that both method are consistent is left to the reader.

Theorem (sufficient condition for convergence)
If A is strictly diagonally dominant by rows, i.e.

|aii| >
∑
j ̸=i

|aij | , i = 1, . . . , n,

then J and GS method both converge.

For the Jacobi method

Taking the following norm ∥C∥ = ∥C∥1 = maxi

(∑
j |Cij |

)
, we obtain ∥BJ∥1 =

maxi

(∑
j

∣∣∣(BJ)ij

∣∣∣) = maxi

(∑
j

∣∣∣aijaii

∣∣∣) from which it follows ∥BJ∥ < 1, since A is
strictly diagonally.

Theorem (sufficient conditions for convergence)

1. If A is strictly diagonally dominant by columns, then J e GS methods converge.

2. If A is SPD then the GS method converge.

3. If A is tridiagonal it can be shown that: ρ2 (BJ) = ρ (BGS). Therefore both
methods converge or fail to converge at the same time. In this case GS method
is more rapidly convergent than the J method.

17

Stopping Criteria

A stopping criteria is just a practical test needed to determine when to stop the
iteration. The idea is to terminate the iterations when: ||x−xk

||x|| ≤ ε. Where ε is the
user-defined tolerance. Unfortunately, we can’t use this strategy in practice, since it
would require the knowledge of the exact solution, which we are trying to find.

1. Residual-based stopping criterion.

This stopping criterion consists of continuing the iteration until
∥∥r(k)∥∥ ≤ ε, ε being

a fixed tolerance. Note that:∥∥∥x− x(k)
∥∥∥ =

∥∥∥A−1b− x(k)
∥∥∥ = ||A−1b−

(
A−1b−A−1rk

)
|| =

∥∥∥A−1r(k)
∥∥∥ ≤ ∥∥A−1

∥∥ ε
Considering instead a normalized residual, i.e. stopping the iteration as soon as∥∥r(k)∥∥ /∥b∥ ≤ ε, we obtain the following control on the relative error:∥∥x− x(k)

∥∥
∥x∥

≤
∥∥A−1

∥∥∥∥r(k)∥∥
∥x∥

=
||A−1||||rk||
||x||

||A||
||A||

≤ K(A)
||rk||
||Ax||

≤ K(A)

∥∥r(k)∥∥
∥b∥

≤ εK(A).

In the case of preconditioned methods, the residual is replaced by the preconditioned
residual, so that the previous criterion becomes∥∥P−1r(k)

∥∥∥∥P−1r(0)
∥∥ ≤ ε

where P is the preconditioning matrix.∥∥x− x(k)
∥∥

∥x∥
≤ K(A)

∥∥r(k)∥∥
∥b∥

=⇒
∥∥r(k)∥∥
∥b∥

≤ ε

Good stopping criterion whenever K(A) is "small". Usually employed for precondi-
tioned scheme.∥∥x− x(k)

∥∥
∥x∥

≤ K
(
P−1A

) ∥∥z(k)
∥∥

∥b∥
=⇒

∥∥z(k)
∥∥

∥b∥
≤ ε z(k) = P−1r(k)

2. Distance between consecutive iterates. Define δ(k) = x(k+1) − x(k)∥∥∥δ(k)∥∥∥ ≤ ε
It can be shown that:

∥∥e(k)∥∥ ≤ 1
1−ρ(B)

∥∥∥δ(k)∥∥∥.
There is a relationship between the true error and δ(k):∥∥∥e(k)∥∥∥ =

∥∥∥x− x(k)
∥∥∥ =

∥∥∥x− x(k+1) + x(k+1) − x(k)
∥∥∥ =

=
∥∥∥e(k+1) + δ(k)

∥∥∥ ≤ ρ(B)
∥∥∥e(k)∥∥∥+ ∥∥∥δ(k)∥∥∥

Therefore this is a "good" stopping criterion only if ρ(B) << 1.

18 CHAPTER 2. ITERATIVE METHODS

Example: Gauss-Seidel method, Hilbert matrix.

The stationary Richardson method

Given x(0) ∈ Rn, α ∈ R, It is based on the following recursive update:

x(k+1) = x(k) + α
(
b−Ax(k)

)
︸ ︷︷ ︸

residual r(k)

The idea is to update the numerical solution by adding a quantity proportional to the
residual. Indeed, it is expected that if the residual is "large" ("small"), the solution
at step k should be corrected "a lot"("slightly").
From (2) it follows x(k+1) = (I − αA)x(k) + αb.
Therefore, the stationary Richardson method is characterised by the iteration matrix
Bα = I−αA and by f = αb. The stationary Richardson method is consistent, indeed:

Bα = I − αA x = x+ α(b−Ax)

Let A be the SPD We introduce the eigenvalues of A (which are real and positive):

λmax(A) = λ1(A) ≥ λ2(A) ≥ . . . ≥ λn(A) = λmin(A) > 0

Theorem: Let A be a symmetric and positive definite matrix. The stationary
Richardson method is convergent if and only if

0 < α <
2

λmax(A)

Sketch of the proof.

λmax(A) = λ1(A) ≥ λ2(A) ≥ . . . ≥ λn(A) = λmin(A) > 0

19

0 < α <
2

λmax(A)∥∥∥e(k+1)
∥∥∥ ≤ ρ (Bα)

∥∥∥e(k)∥∥∥

Proof
=⇒ Let µi, i = 1, . . . , n, be the eigenvalues of Bα = I − αA. We have:

µi = 1− αλi, i = 1, . . . , n

To have convergence it must hold that |1− αλi(A)| < 1, ∀i = 1, . . . , n

−1 < 1− αλi(A) < 1, ∀i = 1, . . . , n

0 < αλi(A) < 2, ∀i = 1, . . . , n

The first bound holds if 0 < α The second bound holds if

α <
2

λi(A)
∀i = 1, . . . , n

⇐= Assume that α is not in the interval (0, 2
λmax(A)). This means that either α ≤ 0

or α ≥ 2
λmax(A) .

1. If α ≤ 0, then for all eigenvalues λ(A) of A, we have αλ(A) ≤ 0. Subtract-
ing αλ(A) from 1 gives us 1 − αλ(A) ≥ 1. Taking absolute values, we get
|1 − αλ(A)| ≥ 1. Since |1 − αλi(A)| is the absolute value of the eigenvalues
of Bα, this implies that all eigenvalues of Bα are greater than or equal to 1
in absolute value. Therefore, the spectral radius ρ(Bα), which is the maxi-
mum absolute value of its eigenvalues, satisfies ρ(Bα) ≥ 1. The spectral radius
ρ(Bα) ≥ 1 means that the method does not converge.

2. If α ≥ 2
λmax(A) , then for the maximum eigenvalue λmax(A) of A, we have

αλmax(A) ≥ 2. Subtracting αλmax(A) from 1 gives us 1 − αλmax(A) ≤ −1.
Taking absolute values, we get |1 − αλmax(A)| ≥ 1. Since |1 − αλi(A)| is the
absolute value of the eigenvalues of Bα, this implies that at least one eigenvalue
of Bα is greater than or equal to 1 in absolute value. Therefore, the spectral
radius ρ(Bα), which is the maximum absolute value of its eigenvalues, satisfies
ρ(Bα) ≥ 1. The spectral radius ρ(Bα) ≥ 1 means that the method does not
converge.

20 CHAPTER 2. ITERATIVE METHODS

Therefore, if α is not in the interval (0, 2
λmax(A)), then the stationary Richardson

method does not converge □

Choice of the optimal parameter α

We now ask ourselves what is the value of the parameter α, among those that guar-
antee convergence, which maximises the speed of convergence. We introduce the
following A-induced norm (remember that A is SPD).

∥z∥A =

√√√√ n∑
i,j=1

aijzizj ←→ ∥z∥A =
√
(Az, z) =

√
zTAz

Recall that
∥∥e(k+1)

∥∥
A
≤ ρ (Bα)

∥∥e(k)∥∥
A
.

We look for 0 < αopt < 2/λmax(A) such that ρ (Bα) is minimum. That is

αopt = argmin
0<α<2/λmax(A)

{
max

i
|1− αλi(A)|

}
We plot on the x-axis the values of α and on the y-axis |1− αλi(A)| , i = 1 . . . , n.
The optimal value is given by the intersection between the curves |1− αλ1(A)| and
|1− αλn(A)|.

Maximum convergence speed:

We now calculate the value of the "optimal" spectral radius ρopt, at the value of the
optimal parameter αopt:

ρopt = ρ
(
Bαopt

)
=− 1 + αopt λmax(A) = 1− αopt λmin(A) =

=
λmax(A)− λmin(A)

λmax(A) + λmin(A)

Since A is SPD, we have ∥A∥2 = λmax(A). Moreover, λi
(
A−1

)
= 1/λi(A), ∀i =

1, . . . , n

ρopt =
K(A)− 1

K(A) + 1

21

Preconditioning techniques

Condition number and speed of convergence:

The optimal value ρopt = K(A)−1
K(A)+1 expresses the maximum convergence speed that

can be attained with a Stationary Richardson method.
Badly conditioned matrices (K(A) >> 1) are characterised by a very low conver-
gence rate. How can we improve the speed of convergence?

IDEA. We introduce a SDP matrix P−1 (the so called preconditioner). Then, solving
Ax = b is equivalent to the following preconditioned system:

P−1/2AP−1/2z = P−1/2b

where x = P−1/2z.

Rule of Thumb. Choose P−1 such that K
(
P−1/2AP−1/2

)
<< K(A) Suppose

that P−1A has real and positive eigenvalues. We apply the stationary Richardson
method to P−1A, i.e.,

x(k+1) = x(k) + αP−1
(
b−Axk

)
= x(k) + αP−1r(k)

We obtain the same convergence results as in the non-preconditioned case, provided
we replace A with P−1A.
Convergence:

0 < α <
2

λmax (P−1A)

Optimal values:

αopt =
2

λmin (P−1A) + λmax (P−1A)

ρopt =
K
(
P−1A

)
− 1

K (P−1A) + 1

Therefore, if K
(
P−1A

)
<< K(A) we obtain a higher convergence rate with respect

to the non-preconditioned case.

ρopt =
K
(
P−1A

)
− 1

K (P−1A) + 1

Can we therefore say that such a preconditioned method is faster than the no pre-
conditioned case? No!
For the moment we can only say that the number of iterations #Iterneeded to sat-
isfy a certain stopping criterion is lower in the preconditioned case than in the un-
reconditioned one.

Indeed, the CPU time is given by:

CPU time = # Iter × C.

22 CHAPTER 2. ITERATIVE METHODS

Remember that x(k+1) = x(k) + αP−1r(k).
We defined the preconditioned residual: z(k) = P−1r(k).

Pseudo-algorithm.
For any k = 0, 1, 2, 3,

1. Compute αopt =
2

λmin(P−1A)+λmax(P−1A)

2. Update r(k) = b−Ax(k)

3. Solve Pz(k) = r(k)

4. Update x(k+1) = x(k) + αoptz
(k)

In the third step we have to solve a linear system in P. We need

K
(
P−1A

)
<< K(A)

Using a preconditioner P can help reduce the number of iterations required for
convergence in iterative methods. The preconditioner should be chosen such that
the eigenvalues of P−1A are clustered, and the linear system involving P can be
easily solved. To achieve this, P should have a special structure, like block diagonal
or block triangular.
When P is easy to invert, the condition number of P−1A is approximately equal to
the condition number of A, as shown below:

K
(
P−1A

)
≃ K(A)

When P is difficult to invert, the condition number of P−1A is much smaller than
the condition number of A, as shown below:

K
(
P−1A

)
<< K(A)

This approach is particularly useful for linear systems with sparse matrices.
How should the preconditioner be chosen?

CPU time = #Iter× C (2.1)

We need:
K(P−1A) << K(A) (2.2)

As seen, this allows us to reduce #Iter. To this end, the preconditioner P should be
chosen such that P−1A have clustered eigenvalues.
The linear system in P must be "easily solved".
This allows to have C not too large. To this aim, P should have a special structure,
for example, P (block) diagonal, (block) triangular.

23

Inexact LU factorization

In the case of Inexact LU factorization, we take PILU = L̃Ũ , where L̃ and Ũ are the
incomplete L and U factors, i.e., A ≈ L̃Ũ with ℓ̃ij = 0 and ũij = 0 if ãij = 0. This
ensures that the factors L̃ and Ũ have the same sparsity pattern as A, and therefore,
the memory occupation is the same (no fill-in). Although A ̸= L̃Ũ , the idea is to
use incomplete LU factorization as a preconditioner because it contains information
about A and is easy to compute the action of the preconditioner (incomplete LU
factorization + 2 triangular systems ∼ n2 FLOPS). An example of this is the inexact
LU factorization applied to a sparse matrix A and its incomplete L̃ and Ũ factors.

The Gradient Method

In the upcoming discussion, we’re going to make some assumptions about a matrix
A. We’ll assume that A is a real-valued matrix (meaning its entries are real numbers)
with a dimension of n, where n is any integer greater than or equal to 1. Furthermore,
we’re assuming that A is both symmetric (meaning it’s equal to its own transpose,
or A = AT) and positive definite. A positive definite matrix is one where, for any
non-zero vector y in Rn, the result of yTAy is always greater than zero. With these
assumptions in place, we can say that solving the linear system represented by the
equation Ax = b is the same as minimizing the quadratic function Φ. This function,
which maps from Rn to R, is defined as follows:

Φ(y) =
1

2
yTAy − yTb

In simpler terms, to solve our linear system, we need to find the vector y that makes
Φ(y) as small as possible.

As A is positive definite, the hyperplane given by z = Φ(y) defines a paraboloid
in Rn+1 with n-dimensional ellipsoids as iso-surfaces Φ(y) = const. and Φ(·) has a
global minimum in x (the equivalence of the problems is obvious, see later). Remem-
ber that A is SPD. We introduce the following energy function Φ : Rn −→ R.

Φ(y) =
1

2
yTAy − yTb

If A is SDP, the energy is a convex function that admits a unique minimum.
Since ∇Φ(y) = Ay−b we have that the minimum (∇Φ(x) = 0) coincides with the
solution of Ax− b.

24 CHAPTER 2. ITERATIVE METHODS

A simple 2D example [
2 0
0 1

] [
x
y

]
=

[
0
0

]
This is equivalent to minimizing the quadratic function Φ(x, y) = x2 + 1

2y
2.

−2 −1 0
1

2−2

0

2
0

5

Φ(x, y) = x2 + 1
2y

2

55

55

4

4

4

4

3

3

3

3

2

2

2
2

2

2

1

1

1

1

−2 −1 1 2

−2

−1

1

2

Isolines for Φ(x, y)

Every perturbation e ̸= 0 of the solution x of Ax = b increases the value of Φ(x).

Φ(x+ e) = . . . = Φ(x) +
1

2
eTAe > Φ(x)

A possibility to find the minimum x is provided by the method of steepest descent.

25

Steepest descent

The method of steepest descent tries to find an update x(k+1) in the direction of
the steepest descent of our quadratic function, i.e., in the direction of the negative
gradient.

−∇Φ
(
x(k)

)
= −

(
1

2

(
AT +A

)
x(k) − b

)
= b−Ax(k) = r(k).

Remark: It would be better to search in the direction of the error e(k) = x−x(k), but
unfortunately the error is unknown. Indeed, for a given x, the vector −∇Φ(x) = r
is the direction of steepest descent, orthogonal to the energy isoline at x.

Thus, if we want to minimize Φ(·), we might think of taking a guess at x(k), evalu-
ating the gradient ∇Φ

(
x(k)

)
, and taking a step in the opposite direction, i.e.,

x(k+1) = x(k) − αk∇Φ
(
x(k)

)
Also other linear iterative methods (Jacobi, Gauss-Seidel, SOR, Richardson) use the
residual as a direction for improving the solution:

• Richardson: x(k+1) = x(k) + αr(k).

• Jacobi: x(k+1) = x(k) +D−1r(k).

• Gauss-Seidel: x(k+1) = x(k) + (D − E)−1r(k).

• SOR: x(k+1) = x(k) + ωD−1r(k).

Steepest descendent: x(k+1) = x(k) + αkr
(k)

How do we choose αk, at each k? Remember that ∇Φ(y) = Ay−b = −r, we obtain:

−∇Φ
(
x(k)

)
= b−Ax(k) = r(k)

Therefore the gradient method can be interpreted as a Richardson method with
dynamic parameter αk.

26 CHAPTER 2. ITERATIVE METHODS

What’s the advantage?
That the parameter αk can be chosen in an optimal way at each iteration k, that the
above algorithm does no longer requires knowing the eigenvalues of A (which often
need to be approximated numerically) The optimal parameter αk is chosen in order
to minimize the energy by moving in the direction of the gradient. This is equivalent
to asking that:

dΦ
(
x(k+1)

)
dαk

= 0

We have:

Φ
(
x(k+1)

)
=
1

2

(
x(k) + αkr

(k)
)T

A
(
x(k) + αkr

(k)
)
−
(
x(k) + αkr

(k)
)T

b

=
1

2

(
x(k)

)T
Ax(k) +

1

2
αk

(
x(k)

)T
Ar(k) +

1

2
αk

(
r(k)

)T
Ax(k) +

1

2
α2
k

(
r(k)

)T
Ar(k)

−
(
x(k)

)T
b− αk

(
r(k)

)T
b = ⋆

Since A = AT we can write the following equation:(
x(k)

)T
Ar(k) =

(
x(k)

)T
ATr(k) =

(
Ax(k)

)T
r(k) =

(
r(k)

)T
Ax(k)

Therefore,

0 =
dΦ
(
x(k+1)

)
dαk

=
(
r(k)

)T
Ax(k) + αk

(
r(k)

)T
Ar(k) −

(
r(k)

)T
b

= −
(
r(k)

)T
r(k) + αk

(
r(k)

)T
Ar(k)

and we obtain:

αk =

(
r(k)

)T
r(k)(

r(k)
)T
Ar(k)

We observe that:

r(k+1) = b−Ax(k+1) = b−A
(
x(k) + αkr

(k)
)
= r(k) − αkAr

(k)

The vector-matrix product Ar(k) in the calculation of αk is then also employed in
the update of the residual r(k+1). Computing r(k+1) costs the sum of two vectors.

Pseudo-algorithm

Given x(0), Compute r(0) = b−Ax(0)

While (STOPPING CRITERIA)

αk =
(r(k))

T
r(k)

(r(k))
T
Ar(k)

∼ n FLOPS if A is sparse

x(k+1) = x(k) + αkr
(k) ∼ n FLOPS

r(k+1) = (I − αkA) r
(k) ∼ n FLOPS

The convergence rate of the gradient method is the same as that of stationary
Richardson’s method with optimal parameter:∥∥∥e(k+1)

∥∥∥
A
≤ K(A)− 1

K(A) + 1

∥∥∥e(k)∥∥∥
A
=⇒

∥∥∥e(k)∥∥∥
A
≤
(
K(A)− 1

K(A) + 1

)k ∥∥∥e(0)∥∥∥
A

27

The Conjugate Gradient method

In the gradient method, two consecutive directions (the residuals) are orthogonal by
construction. Indeed,

0 =
(
∇Φ

(
x(k)

)
, r(k)

)
= −

(
r(k+1), r(k)

)
Two consecutive steepest descent directions are therefore optimal, but this is no
longer true in general, i.e., the convergence behaviour of the method of steepest de-
scent is in general poor.
To overcome this limit, we introduce a new updating direction, d(k+1), in such a way
that it is A-conjugate to all the previous directions d(j), j ≤ k (i.e., orthogonal with
respect to the scalar product induced by A).

Theorem: In exact arithmetic the GC method converges to the exact solution in at
most n iterations. At each iteration k, the error e(k) = x− x(k) can be bounded by∥∥∥e(k)∥∥∥

A
≤ 2ck

1 + c2k

∥∥∥e(0)∥∥∥
A

with c =
√
K(A)− 1√
K(A) + 1

Round-off errors can affect the performance.

Gradient method error bound:∥∥∥e(k)∥∥∥
A
≤
(
K(A)− 1

K(A) + 1

)k ∥∥∥e(0)∥∥∥
A

CG method error bound: ∥∥∥e(k)∥∥∥
A
≤ 2ck

1 + c2k

∥∥∥e(0)∥∥∥
A

CG Pseudo Algorithm

Given x(0), Compute r(0) = b−Ax(0), set d(0) = r(0)

While (STOPPING CRITERIA)

αk =

(
d(k)

)T
r(k)(

d(k)
)T

Ad(k)
,

x(k+1) = x(k) + αkd
(k),

r(k+1) = r(k) − αk Ad(k),

βk =

(
Ad(k)

)T
r(k+1)(

Ad(k)
)T

d(k)

d(k+1) = r(k+1) − βkd(k)

Each iteration has a cost comparable with that of Richardson and Gradient methods.
Both methods converge slowly for linear system of equations with poorly conditioned
matrices.

28 CHAPTER 2. ITERATIVE METHODS

Preconditioned Conjugate Gradient

A preconditioner with the same requirements discussed previously is introduced, in
order to accelerate convergence. Let A and P be SDP. We consider the following
preconditioned system

Âx̂ = b̂

where:
P−1AP−T︸ ︷︷ ︸

Â

P Tx︸︷︷︸
x̂

= P−1b︸ ︷︷ ︸
b̂

Given x(0), Compute r(0) = b−Ax(0), set d(0) = r(0)

While (STOPPING CRITERIA)

αk =
z(k)

T
r(k)(

Ad(k)
)T

d(k)
,

x(k+1) = x(k) + αkd
(k),

r(k+1) = r(k) − αkAd(k),

Pz(k+1) = r(k+1),

βk =

(
Ad(k)

)T
z(k+1)(

Ad(k)
)T

d(k)

d(k+1) = z(k+1) − βkd(k)

The PCG method, error bounds∥∥∥e(k)∥∥∥
A
≤ 2ck

1 + c2k

∥∥∥e(0)∥∥∥
A

with c =

√
K (P−1A)− 1√
K (P−1A) + 1

If the preconditioner is a "good" preconditioner then√
K (P−1A)− 1√
K (P−1A) + 1

<

√
K(A)− 1√
K(A) + 1

Krylov-space methods

The iterative methods that are today applied for solving large-scale linear systems
are mostly preconditioned Krylov (sub)space solvers.

For linear iterative methods (with P = I, αk = 1) as those we have seen before, we
have:

x(k+1) = x(k) + r(k) k ≥ 1

The following recursive relation for the residuals holds

r(k+1) = r(k) −Ar(k) k ≥ 1

29

From the above identity, it follows by induction, that

r(k) = pk−1(A)r
(0) ∈ span

{
r(0), Ar(0), . . . , Ak−1r(0)

}
where pr(z) = (1−z)r is a polynomial of exact degree r. From the previous relations,
we have that:

x(k) = x(0) + r(0) + . . .+ r(k−1) = x(0) + qk−1(A)r
(0)

with a polynomial qn−1 of exact degree n− 1. So x(k) lies in the affine space.

x(0) + span
{
r(0), Ar(0), . . . , Ak−1r(0)

}
obtained by shifting the subspace of rk−1.

Definition of Krylov (sub)space. Given a nonsingular A ∈ Rn×n and y ∈ Rn,y ̸=
0, the kth Krylov (sub)space Kk(A,y) generated by A from y is:

Kk(A,y) := span
(
y, Ay, . . . , Ak−1y

)
Clearly, it holds that:

K1(A,y) ⊆ K2(A,y) ⊆ . . .

Can we expect to find the exact solution x of Ax = b in one of those affine space?

Lemma. Let x be the solution of Ax = b and let x(0) be any initial approximation
of it and r(0) = b − Ax(0) the corresponding residual. Moreover, let ν = ν

(
r(0), A

)
be the so called grade of r(0) with respect to A. Then:

x ∈ x(0) + Kν

(
A, r(0)

)
Grade of y with respect to A

Lemma. There is a positive integer ν = ν(y, A), called grade of y with respect to
A, such that:

dim (Ks(A, y)) =

{
s if s < ν
ν if s ≥ ν

Kν(A,y) is is the smallest A-invariant subspace that contains y.

Lemma. The nonnegative integer ν = ν(y, A) of y with respect to A satisfies:

ν(y, A) = min
{
s | A−1y ∈ Ks(A, y)

}
The idea behind Krylov space solvers is to generate a sequence of approximate so-
lutions x(k) ∈ x(0) + Kk

(
A, r(0)

)
of Ax = b so that the corresponding residuals

r(k) ∈ Kk+1

(
A, r(0)

)
"converge" to the zero vector 0.

Here, "converge" may also mean that after a finite number of steps, r(k) = 0, so
that xk = x and the process stops. This is in particular true (in exact arithmetic) if

30 CHAPTER 2. ITERATIVE METHODS

a method ensures that the residuals are linearly independent: then r(ν) = 0. In this
case we say that the method has the finite termination property.

Definition: A (standard) Krylov space method for solving a linear system Ax = b
or, briefly, a Krylov space solver is an iterative method starting from some initial
approximation x(0) and the corresponding residual r(0) until it possibly finds the
exact solution, iterating x(k) such that:

x(k) = x(0) + pk−1(A)r
(0)

with a polynomial pk−1(A) of exact degree k − 1. For some k,x(k) may not exist or
pk−1(A) may have lower degree.

In some widely used Krylov space solvers (e.g., BICG) there may exist exceptional
situations, where for some n the iterate xn and the residual rn are not defined. In
other Krylov space solvers (e.g., CR), there may be indices where xn exists, but the
polynomial qn−1 is of lower degree than n− 1.

Krylov space methods

When applied to large real-world problems Krylov space solvers often converge very
slowly - if at all. In practice, Krylov space solvers are therefore nearly always applied
with preconditioning:

Ax = b ⇐⇒ P−1
L APR︸ ︷︷ ︸

Â

P−1
R x︸ ︷︷ ︸
x̂

= P−1b︸ ︷︷ ︸
b̂

⇐⇒ Âx̂ = b̂, PRx̂ = x

Applying a preconditioned Krylov space solver just means to apply the method to
Âx̂ = b̂.

The CG method is a Krylov space solver

CG is the archetype of a Krylov space solver that is an orthogonal projection method.
By definition, such a method chooses the step length αk so that x(k+1) is locally
optimal on the search line.

αk =

(
d(k)

)T
r(k)(

d(k)
)T

Ad(k)
,

x(k+1) = x(k) + αkd
(k),

r(k+1) = r(k) − αk Ad(k),

βk =

(
Ad(k)

)T
r(k+1)(

Ad(k)
)T

d(k)

d(k+1) = r(k+1) − βkd(k)

But does it also yield the best x(k+1) ∈ x(0) + span {d0,d1, . . . ,dk}?
The next result shows that:

span {d0,d1, . . . ,dk} = Kk+1

(
A, r(0)

)

31

Theorem: The Conjugate Gradient (CG) method produces approximate solutions,
x(k), that belong to the affine space x(0) + Kk

(
A, r(0)

)
.

Theorem. The CG method yields approximate solutions xn ∈ x0 + Kn (A, r0)
that are optimal in the sense that they minimize the energy norm (A-norm) of the
error (i.e., the A−1-norm of the residual) for xn from this affine space.

The residual can be updated using the following formula:

r(k+1) = r(k) − αkAd
(k),

The value of βk can be calculated using this formula:

βk =

(
Ad(k)

)T
r(k+1)

(Ad)(k)T d(k)

d(k+1) = r(k+1) − βkd(k)

Krylov space solvers for nonsymmetric systems

Solving nonsymmetric linear systems iteratively with Krylov space solvers is consid-
erably more difficult and costly than symmetric systems. There are two different
ways to generalize CG:

• Maintain the orthogonality of the projection and the related minimality of the
error by constructing either orthogonal residuals x(k) (generalized CG - GCG).
Then, the recursions involve all previously constructed residuals or search di-
rections and all previously constructed iterates.

• Maintain short recurrence formulas for residuals, direction vectors and iter-
ates (biconjugate gradient (BiCG) method, Lanczos-type product methods
(LTPM)). The resulting methods are at best oblique projection methods. There
is no minimality property of error or residuals vectors.

The Biconjugate gradient (BiCG) method

While CG (for spd A) has mutually orthogonal residuals r(k) with r(k) = pk(A)r
(0) ∈

span
{
r(0), Ar(0), . . . , Akr(0)

}
= Kk+1

(
A, r(0)

)
, BiCG constructs in the same spaces

residuals that are orthogonal to a dual Krylov space spanned by "shadow residuals".

rn = pn(A)r0 ∈ span {r0,Ar0, . . . ,A
nr0} =: Kn+1 (A, r0)

r̃(k) = pk
(
AT
)
r̃(0) ∈ span

{
r̃(0), AT r̃(0), . . . ,

(
AT
)k

r̃(0)
}
= Kk+1

(
AT , r̃(0)

)
=: K̃k+1

The initial shadow residual r̃(0) can be chosen freely. So, BiCG requires two matrix-
vector multiplications to extend Kk and K̃k : one multiplication by A and one by

32 CHAPTER 2. ITERATIVE METHODS

AT . The use of the transpose of A allows us to construct a dual Krylov space that is
different from the original Krylov space. This is crucial for handling non-symmetric
matrices, as it allows us to construct residuals that are orthogonal to a different
space. However, this comes at a cost: while the CG method requires one matrix-
vector multiplication per iteration (by A), the BiCG method requires two

(
one by

A and one by AT
)
. This makes the BiCG method more computationally expensive

than the CG method.

The BiCGSTAB method

The biconjugate gradient stabilized method (BiCGSTAB), is a variant of the bicon-
jugate gradient method (BiCG) and has faster and smoother convergence than the
original BiCG.
It is unnecessary to explicitly keep track of the residuals and search directions of
BiCG. In other words, the BiCG iterations can be performed implicitly.

In other words, BiCGSTAB simplifies the process by reducing the amount of data
that needs to be stored and manipulated, leading to potentially significant savings
in computational resources. This makes it a more efficient method for solving non-
symmetric linear systems.

Choose x(0), x̂(0), b̂,
Compute r(0) = b−Ax(0),
Compute r̂(0) = b− x̂(0)A
d0 = r(0), d̂0 = r̂(0)

WHILE(STOPPING CRITERIA)
αk = r̂(k)r(k)

d̂kAdk

x(k+1) = x(k) + αkdk

x̂(k+1) = x̂(k) + αkd̂k

r(k+1) = r(k) − αkAr
(k)

r̂(k+1) = r̂(k) − αkAr̂
(k)

βk = r̂(k)r(k)

r̂(k)r(k)

dk+1 = r(k+1) + βkdk

d̂k+1 = r̂(k+1) + βkd̂k

The GMRES method

The goal of GMRES is to find a vector within this Krylov subspace that minimizes
the residual, or the difference between the actual solution and the approximated so-
lution. This is done using the Arnoldi iteration, which is a process that constructs
an orthogonal basis for the Krylov subspace.

Recall that the k-th Krilov space Kk = Kk

(
A, r(0)

)
is given by:

Kk

(
A, r(0)

)
= span

{
r(0), Ar(0), . . . , Ak−1r(0)

}
.

33

GMRES approximates the exact solution of Ax = b by the vector Kk

(
A, r(0)

)
that

minimizes the Euclidean norm of the residual r(k) = b−Ax(k).
The Arnoldi iteration is a method used to find an orthonormal basis for the Krylov
subspace. The Krylov subspace is spanned by the vectors r(0), Ar(0), . . . , Ak−1r(0).
However, these vectors can be close to linearly dependent (i.e., one vector can be
approximated as a linear combination of the others), which can cause numerical in-
stability.
To avoid this issue, the Arnoldi iteration constructs a set of orthonormal vectors
q1,q2, . . . ,qk that span the same space as the original vectors. These orthonormal
vectors form a stable basis for the Krylov subspace, which is crucial for the stability
and accuracy of the GMRES method.

Choose x(0), Compute r(0) = b−Ax(0),
Set q1 = r(0)/

∥∥r(0)∥∥
2

WHILE(STOPPING CRITERIA)
Compute qk with the Arnoldi method
Form Qk as the n× k matrix formed by q1,q2, . . . ,qk

Find y(k) which minimize
∥∥r(k)∥∥

2

Compute x(k+1) = x(0) +Qky
(k)

end

GMRES some remarks

Remarks:

• At every iteration k, a matrix-vector product must be computed, which costs
about n2 FLOPS for dense matrices. If A is sparse, this cost is O(n) FLOPS.

• In addition to the matrix-vector product, O(kn) FLOPS operations must be
computed at the k-th iteration.

• The k-th iterate minimises the residual in the Krylov subspace Kk

(
A, r(0)

)
. In

exact arithmetic, since every subspace is (strictly) contained in the next sub-
space, the residual does not increase. Therefore, after n = size(A) iterations,
the Krylov space Kn

(
A, r(0)

)
is the whole of Rn. hence the GMRES method

has finite termination property in exact arithmetic, but this does not happen
in practice.

GMRES convergence, special cases

• If AS =
(
A+AT

)
/2 is SPD, then

∥∥∥r(k)∥∥∥ ≤ [1− λ2min (AS)

λmax (ATA)

]k/2 ∥∥∥r(0)∥∥∥ .
• If A is SPD, then

∥∥∥r(k)∥∥∥ ≤ [[K2(A)]
2 − 1

[K2(A)]
2

]k/2 ∥∥∥r(0)∥∥∥ .

34 CHAPTER 2. ITERATIVE METHODS

Chapter 3

Elements of Multigrid

This chapter follows closely the first three chapters of the following book: "A Multi-
grid Tutorial: Second Edition", by William L. Briggs, Van Emden Henson, Steve F.
McCormick. It is recommended to read them to gain a deeper understanding.

It is possible to expand arbitrary vectors in terms of a set of eigenvectors of the
matrix, if it has full rank, as it happens in many physical problems. Let e(0) be the
error in an initial guess used in a iterative method. Then it is possible to represent
e(0) using the eigenvectors of R in the form:

e(0) =
n∑

k=1

ckwk,

where the coefficients ck ∈ R give the "amount" of each mode in the error. Many
standard iterative methods, like Jacobi or Gauss Seidel, possess the smoothing prop-
erty, which makes these methods very effective at eliminating the high-frequency or
oscillatory components of the error, while leaving the low-frequency or smooth com-
ponents relatively unchanged. The immediate issue is whether these methods can be
modified in some way to make them effective on all error components.

One way to improve a relaxation scheme, at least in its early stages, is to use a
good initial guess. A well-known technique for obtaining an improved initial guess
is to perform some preliminary iterations on a coarse grid. Relaxation on a coarse
grid is less expensive because there are fewer unknowns to be updated. Moreover, as
mentioned before, because the convergence factor behaves like 1−O

(
h2
)
, the coarse

grid will have a marginally improved convergence rate. This line of reasoning at least
suggests that coarse grids might be worth considering.

With the coarse grid idea in mind, we can think more carefully about its impli-
cations. Recall that most basic relaxation schemes suffer in the presence of smooth
components of the error. Assume that a particular relaxation scheme has been ap-
plied until only smooth error components remain. We now ask what these smooth
components look like on a coarser grid. It is easy to understand that in passing from
the fine grid to the coarse grid, a mode becomes more oscillatory.

A smooth wave with k = 4 on a grid Ωh with n = 12 points has been projected

35

36 CHAPTER 3. ELEMENTS OF MULTIGRID

directly to the grid Ω2h with n = 6 points. On this coarse grid, the original wave
still has a wavenumber of k = 4. We see that a smooth wave on Ωh looks more
oscillatory on Ω2h.
To be more precise, note that the grid points of the coarse grid Ω2h are the even-
numbered grid points of the fine grid Ωh. Consider the k-th mode on the fine grid
evaluated at the even-numbered grid points. If 1 ≤ k < n

2 , its components may be
written as:

wh
k,2j = sin

(
2jkπ
n

)
= sin

(
jkπ
n/2

)
= w2h

k,j , 1 ≤ k < n
2 .

Notice that superscripts have been used to indicate the grids on which the vec-
tors are defined. From this identity, we see that the k-th mode on Ωh becomes the
k-th mode on Ω2h. This fact is easier to understand by noting that there are half as
many modes on Ω2h as there are on Ωh.

The important consequence of this fact is that in passing from the fine grid to the
coarse grid, a mode becomes more oscillatory. This is true provided that 1 ≤ k < n

2 .
It should be verified that the k = n

2 mode on Ωh becomes the zero vector on Ω2h.

Figure 3.1: Wave with wavenumber k = 4 on Ωh (n = 12 points) projected onto
Ω2h (n = 6 points). The coarse grid "sees" a wave that is more oscillatory on the
coarse grid than on the fine grid.

As an aside, it is worth mentioning that fine-grid modes with k > n
2 undergo a

more curious transformation. Through the phenomenon of aliasing, the k-th mode
on Ωh becomes the (n− k)-th mode on Ω2h when k > n

2 . In other words, the oscil-
latory modes of Ωh are misrepresented as relatively smooth modes on Ω2h.

37

The important point is that smooth modes on a fine grid look less smooth on a
coarse grid. This suggests that when relaxation begins to stall, signaling the pre-
dominance of smooth error modes, it is advisable to move to a coarser grid. There,
the smooth error modes appear more oscillatory and relaxation will be more effective.
The question is: how do we move to a coarser grid and relax on the more oscillatory
error modes?

Recall that we have an equation for the error itself, namely, the residual equation.
If v is an approximation to the exact solution u, then the error e = u− v satisfies:

Ae = r = f −Av

which says that we can relax directly on the error by using the residual equation.
There is another argument that justifies the use of the residual equation. Relaxation
on the original equation Au = f with an arbitrary initial guess v is equivalent to
relaxing on the residual equation Ae = r with the specific initial guess e = 0. This
intimate connection between the original and the residual equations further moti-
vates the use of the residual equation.

Given the equation Au = f , where A is the coefficient matrix, u is the unknown
vector, and f is the right-hand side vector. If v is an approximation to u, the error
e can be defined as e = u − v. Substituting u = v + e into the original equation
and simplifying gives Ae = f −Av = r, which is the residual equation.

This demonstrates that relaxing directly on the error using the residual equation
is equivalent to relaxing on the original equation with an arbitrary initial guess, as
both the error and the residual are linked through the same linear system governed
by matrix A"

We must now gather these loosely connected ideas. We know that many relaxation
schemes possess the smoothing property. This leads us to consider using coarser grids
during the computation to focus the relaxation on the oscillatory components of the
error. In addition, there seems to be good reason to involve the residual equation in
the picture. We now try to give these ideas a little more definition by proposing two
strategies.

We begin by proposing a strategy that uses coarse grids to obtain better initial
guesses.

• Relax on Au = f on a very coarse grid to obtain an initial guess for the next
finer grid.

• Relax on Au = f on Ω4h to obtain an initial guess for Ω2h.

• Relax on Au = f on Ω2h to obtain an initial guess for Ωh.

• Relax on Au = f on Ωh to obtain a final approximation to the solution.

This idea of using coarser grids to generate improved initial guesses is the basis of a
strategy called nested iteration. Although the approach is attractive, it also leaves

38 CHAPTER 3. ELEMENTS OF MULTIGRID

some questions. For instance, what does it mean to relax on Au = f on Ω2h ? We
must somehow define the original problem on the coarser grids. Also, what happens
if, having once reached the fine grid, there are still smooth components in the error?
We may have obtained some improvement by using the coarse grids, but the final
iteration will stall if smooth components still remain. We return to these questions
and find answers that will allow us to use nested iteration in a very powerful way.

A second strategy incorporates the idea of using the residual equation to relax on
the error. It can be represented by the following procedure:

• Relax on Au = f on Ωh to obtain an approximation vh.

• Compute the residual r = f −Avh.

Relax on the residual equation Ae = r on Ω2h to obtain an approximation to the
error e2h.

• Correct the approximation obtained on Ωh with the error estimate obtained
on Ω2h : vh ← vh + e2h.

This procedure is the basis of what is called the correction scheme. Having relaxed
on the fine grid until convergence deteriorates, we relax on the residual equation on
a coarser grid to obtain an approximation to the error itself. We then return to the
fine grid to correct the approximation first obtained there. There is a rationale for
using this correction strategy, but it also leaves some questions to be answered. For
instance, what does it mean to relax on Ae = r on Ω2h ? To answer this question,
we first need to know how to compute the residual.

Figure 3.2: Interpolation of a vector on coarse grid Ω2h to fine grid Ωh on Ωh and
transfer it to Ω2h.

We also need to know how to relax on Ω2h and what initial guess should be used.
Moreover, how do we transfer the error estimate from Ω2h back to Ωh? These ques-
tions suggest that we need mechanisms for transferring information between the
grids. We now turn to this important consideration.
In our discussion of intergrid transfers, we consider only the case in which the coarse

39

grid has twice the grid spacing of the next finest grid. This is a nearly universal prac-
tice, because there is usually no advantage in using grid spacings with ratios other
than 2. Think for a moment about the step in the correction scheme that requires
transferring the error approximation e2h from the coarse grid Ω2h to the fine grid
Ωh. This is a common procedure in numerical analysis and is generally called inter-
polation or prolongation. Many interpolation methods could be used. Fortunately,
for most multigrid purposes, the simplest of these is quite effective. For this reason,
we consider only linear interpolation.

The linear interpolation operator will be denoted Ih2h. It takes coarse-grid vectors
and produces fine-grid vectors according to the rule Ih2hv

2h = vh, where{
vh2j = v2hj

vh2j+1 = 1
2

(
v2hj + v2hj+1

)
, 0 ≤ j ≤ n

2 − 1

Figure 3.2 shows graphically the action of Ih2h. At even-numbered fine-grid points,
the values of the vector are transferred directly from Ω2h to Ωh. At odd-numbered
fine-grid points, the value of vh is the average of the adjacent coarse-grid values.

In anticipation of discussions to come, we note that Ih2h is a linear operator from
R

n
2
−1 to Rn−1. It has full rank and the trivial null space, N = {0}. How well does

this interpolation process work? First assume that the "real" error (which is not
known exactly) is a smooth vector on the fine grid.

a)

(b)

Figure 3.3 (a) If the exact error on Ωh (indicated by ◦ and •) is smooth, an inter-
polant of the coarse-grid error e2h (solid line connecting ◦ points) should give a good

40 CHAPTER 3. ELEMENTS OF MULTIGRID

representation of the exact error. (b) If the exact error on Ωh (indicated by ◦ and
•) is oscillatory, an interpolant of the coarse-grid error e2h (solid line connecting ◦
points) may give a poor representation of the exact error.

Assume also that a coarse-grid approximation to the error has been determined
on Ω2h and that this approximation is exact at the coarse-grid points. When this
coarse grid approximation is interpolated to the fine grid, the interpolant is also
smooth. Therefore, we expect a relatively good approximation to the fine-grid error,
as shown in Fig. 3.3(a). By contrast, if the "real" error is oscillatory, even a very
good coarse-grid approximation may produce an interpolant that is not very accu-
rate. This situation is shown in Fig. 3.3(b).

Thus, interpolation is most effective when the error is smooth. Because interpo-
lation is necessary for both nested iteration and the correction scheme, we may
conclude that these two processes are most effective when the error is smooth. As
we will see shortly, these processes provide a fortunate complement to relaxation,
which is most effective when the error is oscillatory. For two-dimensional problems,
the interpolation operator may be defined in a similar way. If we let Ih2hv

2h = vh,
then the components of vh are given by:

vh2i,2j = v2hij

vh2i+1,2j = 1
2

(
v2hij + v2hi+1,j

)
vh2i,2j+1 = 1

2

(
v2hij + v2hi,j+1

)
vh2i+1,2j+1 = 1

4

(
v2hij + v2hi+1,j + v2hi,j+1 + v2hi+1,j+1

)
, 0 ≤ i, j ≤ n

2 − 1.

The second class of intergrid transfer operations involves moving vectors from a
fine grid to a coarse grid. They are generally called restriction operators and are
denoted by I2hh . The most obvious restriction operator is injection. It is defined by
I2hh vh = v2h, where:

v2hj = vh2j

Figure 3.4: Restriction by full weighting of a fine-grid vector to the coarse grid.

In other words, with injection, the coarse-grid vector simply takes its value directly
from the corresponding fine-grid point. An alternate restriction operator, called full

41

weighting, is defined by I2hh vh = v2h, where:

v2hj =
1

4

(
vh2j−1 + 2vh2j + vh2j+1

)
, 1 ≤ j ≤ n

2
− 1

As Fig. 3.4 shows, the values of the coarse-grid vector are weighted averages of values
at neighboring fine-grid points. In the discussion that follows, we use full weighting
as a restriction operator. However, in some instances, injection may be the better
choice.

The full weighting operator is a linear operator from Rn−1 to R
n
2
−1. It has a rank of

n
2 − 1 and a null space of dimension n

2 . One reason for our choice of full weighting
as a restriction operator is the important fact that:

Ih2h = c
(
I2hh

)T
, c ∈ R.

The fact that the interpolation operator and the full weighting operator are trans-
poses of each other up to a constant is called a variational property and will soon
be of importance. For the sake of completeness, we give the full weighting operator
in two dimensions. It is just an averaging of the fine-grid nearest neighbors. Letting
I2hh vh = v2h, we have that:

v2hij =
1

16

[
vh2i−1,2j−1 + vh2i−1,2j+1 + vh2i+1,2j−1 + vh2i+1,2j+1

+ 2
(
vh2i,2j−1 + vh2i,2j+1 + vh2i−1,2j + vh2i+1,2j

)
+4vh2i,2j

]
, 1 ≤ i, j ≤ n

2
− 1

We now have a well-defined way to transfer vectors between fine and coarse grids.
Therefore, we can return to the correction scheme and make it precise. To do this,
we define the following two-grid correction scheme.

Two-Grid Correction Scheme

vh ←MG
(
vh, fh

)
• Relax ν1 times on Ahuh = fh on Ωh with initial guess vh.

• Compute the fine-grid residual rh = fh − Ahvh and restrict it to the coarse
grid by r2h = I2hh rh.

• Solve A2he2h = r2h on Ω2h.

• Interpolate the coarse-grid error to the fine grid by eh = Ih2he
2h and correct

the fine-grid approximation by vh ← vh + eh.

• Relax ν2 times on Ahuh = fh on Ωh with initial guess vh.

This procedure is simply the original correction scheme, now refined by the use of the
inter-grid transfer operators. We relax on the fine grid until it ceases to be worth-
while. In practice, ν1 is often 1, 2, or 3. The residual of the current approximation
is computed on Ωh and then transferred by a restriction operator to the coarse grid.

42 CHAPTER 3. ELEMENTS OF MULTIGRID

As it stands, the procedure calls for the exact solution of the residual equation on
Ω2h, which may not be possible. However, if the coarse-grid error can at least be ap-
proximated, it is then interpolated up to the fine grid, where it is used to correct the
fine-grid approximation. This is followed by ν2 additional fine-grid relaxation sweeps.

Several comments are in order. First, notice that the superscripts h or 2h are essen-
tial to indicate the grid on which a particular vector or matrix is defined. Second,
all of the quantities in the above procedure are well defined except for A2h. For the
moment, we take A2h simply to be the result of discretizing the problem on Ω2h. Fi-
nally, the integers ν1 and ν2 are parameters in the scheme that control the number of
relaxation sweeps before and after visiting the coarse grid. They are usually fixed at
the start, based on either theoretical considerations or on past experimental results.

It is important to appreciate the complementarity at work in the process. Relax-
ation on the fine grid eliminates the oscillatory components of the error, leaving a
relatively smooth error. Assuming the residual equation can be solved accurately
on Ω2h, it is still important to transfer the error accurately back to the fine grid.
Because the error is smooth, interpolation should work very well and the correction
of the fine-grid solution should be effective.

One more point needs to be addressed: what initial guess do we use for v2h on
the first visit to Ω2h ? Because there is presumably no information available about
the solution, u2h, we simply choose v2h = 0. Here then is the two-grid correction
scheme, now imbedded within itself. We assume that there are l > 1 grids with grid
spacings h, 2h, 4h, . . . , Lh = 2l−1h.

V-Cycle Scheme

• vh ← V h
(
vh, fh

)
– Relax on Ahuh = fh ν1 times with initial guess vh.

– Compute f2h = I2hh rh.

∗ Relax on A2hu2h = f2h ν1 times with initial guess v2h = 0.
∗ Compute f4h = I4h2hr

2h.
· Relax on A4hu4h = f4h ν1 times with initial guess v4h = 0.
· Compute f8h = I8h4hr

4h.
· Solve ALhuLh = fLh.

∗ Correct v4h ← v4h + I4h8hv
8h.

∗ Relax on A4hu4h = f4h ν2 times with initial guess v4h.

– Correct v2h ← v2h + I2h4hv
4h.

– Relax on A2hu2h = f2h v2 times with initial guess v2h.

• Correct vh ← vh + Ih2hv
2h.

• Relax on Ahuh = fhν2 times with initial guess vh.

43

The algorithm telescopes down to the coarsest grid, which can consist of one or a
few interior grid points, then works its way back to the finest grid. Figure 3.6(a)
shows the schedule for the grids in the order in which they are visited. Because of
the pattern in this diagram, this algorithm is called the V -cycle. It is our first true
multigrid method.
Not surprisingly, the V-cycle has a compact recursive definition, which is given as
follows.

V-Cycle Scheme (Recursive Definition)

To facilitate the description of this procedure, some economy of notation is desir-
able. The same notation is used for the computer implementation of the resulting
algorithm. We call the right-side vector of the residual equation f2h, rather than
r2h, because it is just another right-side vector. Instead of calling the solution of the
residual equation e2h, we use u2h because it is just a solution vector. We can then
use v2h to denote approximations to u2h. These changes simplify the notation, but
it is still important to remember the meaning of these variables.

One more point needs to be addressed: what initial guess do we use for v2h on
the first visit to Ω2h ? Because there is presumably no information available about
the solution, u2h, we simply choose v2h = 0. Here then is the two-grid correction
scheme, now imbedded within itself. We assume that there are l > 1 grids with grid
spacings h, 2h, 4h, . . . , Lh = 2l−1h.

1. Relax ν1 times on Ahuh = fh with a given initial guess vh.

2. If Ωh = coarsest grid, then go to step 4 .

Else

f2h ← I2hh

(
fh −Ahvh

)
v2h ← 0

v2h ← V 2h
(
v2h, f2h

)
3. Correct vh ← vh + Ih2hv

2h.

4. Relax ν2 times on Ahuh = fh with initial guess vh.

The V-cycle is just one of a family of multigrid cycling schemes. The entire family
is called the µ-cycle method and is defined recursively by the following.

µ-Cycle Scheme

vh ←Mµh
(
vh, fh

)

44 CHAPTER 3. ELEMENTS OF MULTIGRID

1. Relax ν1 times on Ahuh = fh with a given initial guess vh.

2. If Ωh = coarsest grid, then go to step 4 .

Else

f2h ← I2hh

(
fh −Ahvh

)
v2h ← 0

v2h ←Mµ2h
(
v2h, f2h

)
µ times.

3. Correct vh ← vh + Ih2hv
2h.

4. Relax ν2 times on Ahuh = fh with initial guess vh.

In practice, only µ = 1 (which gives the V-cycle) and µ = 2 are used. Figure 3.6(b)
shows the schedule of grids for µ = 2 and the resulting W -cycle. We refer to a V-
cycle with ν1 relaxation sweeps before the correction step and ν2 relaxation sweeps
after the correction step as a V (ν1, ν2)-cycle, with a similar notation for W-cycles.

We originally stated that two ideas would lead to multigrid. So far we have devel-
oped only the correction scheme. The nested iteration idea has yet to be explored.
Recall that nested iteration uses coarse grids to obtain improved initial guesses for
fine-grid problems. In looking at the V-cycle, we might ask how to obtain an in-
formed initial guess for the first fine-grid relaxation. Nested iteration would suggest
solving a problem on Ω2h. But how can we obtain a good initial guess for the Ω2h

problem? Nested iteration sends us to Ω4h. Clearly, we are on another recursive
path that leads to the coarsest grid.

The algorithm that joins nested iteration with the V-cycle is called the full multigrid
V -cycle (FMG). Given first in explicit terms, it appears as follows.

Full Multigrid V-Cycle

We initialize the coarse-grid right sides by transferring fh from the fine grid. Another
option is to use the original right-side function f . The cycling parameter, ν0, sets
the number of V-cycles done at each level. It is generally determined by a previous

45

numerical experiment; ν0 = 1 is the most common choice. Expressed recursively, the
algorithm has the following compact form.

Full Multigrid V-Cycle (Recursive Form)

vh ← FMGh
(
fh
)

1. If Ωh = coarsest grid, set vh ← 0 and go to step 3 .

Else

f2h ← I2hh

(
fh
)

v2h ← FMG2h
(
f2h
)
.

2. Correct vh ← Ih2hv
2h.

3. vh ← V h
(
vh, fh

)
ν0 times.

Figure 3.6 Schedule of grids for (a) V-cycle, (b) W-cycle, and (c) FMG scheme, all
on four levels.

Figure 3.6(c) shows the schedule of grids for FMG with ν0 = 1. Each Vcycle is

46 CHAPTER 3. ELEMENTS OF MULTIGRID

preceded by a coarse-grid V-cycle designed to provide the best initial guess possible.
As we will see, the extra work done in these preliminary V-cycles is not only inex-
pensive (Exercise 8), but easily pays for itself.

Full multigrid is the complete knot into which the many threads of the preceding
pages are tied. It is a remarkable synthesis of ideas and techniques that individually
have been well known and used for a long time. Taken alone, many of these ideas
have serious defects. Full multigrid is a technique for integrating them so that they
can work together in a way that overcomes these limitations. The result is a very
powerful algorithm.

Chapter 4

Algebraic Multigrid Methods

This chapter follows closely the eighth chapter of the following book: "A Multigrid
Tutorial: Second Edition", by William L. Briggs, Van Emden Henson, Steve F. Mc-
Cormick. It is recommended to read it to gain a deeper understanding.

Can we apply multigrid techniques when there is no grid? Suppose we have re-
lationships among the unknowns that are similar to those in the model problem, but
the physical locations of the unknowns are themselves unknown (or immaterial). Can
we hope to apply the tools we have developed? A related question is if it is possible
to apply multigrid in the case where grid locations are known but may be highly
unstructured or irregular, making the selection of a coarse grid problematic? These
are the problems that are addressed by a technique known as algebraic multigrid, or
AMG.

For any multigrid algorithm, the same fundamental components are required. There
must be a sequence of grids, intergrid transfer operators, a relaxation (smoothing)
operator, coarse-grid versions of the fine-grid operator, and a solver for the coarsest
grid.

Let us begin by deciding what we mean by a grid. Throughout this chapter, we
look to standard multigrid (which we refer to as the geometric case) to guide us in
defining AMG components. In the geometric case, the unknown variables ui are de-
fined at known spatial locations (grid points) on a fine grid. We then select a subset
of these locations as a coarse grid. As a consequence, a subset of the variables ui
is used to represent the solution on the coarse grid. For AMG, by analogy, we seek
a subset of the variables ui to serve as the coarse-grid unknowns. A useful point of
view, then, is to identify the grid points with the indices of the unknown quantities.
Hence, if the problem to be solved is Au = f and then the fine-grid points are just
the indices {1, 2, . . . , n}.

u =


u1
u2
...
un


47

48 CHAPTER 4. ALGEBRAIC MULTIGRID METHODS

Having defined the grid points, the connections within the grid are determined by
the undirected adjacency graph of the matrix A. Letting the entries of A be aij , we
associate the vertices of the graph with the grid points and draw an edge between
the i-th and j-th vertices if either aij ̸= 0 or aji ̸= 0. The connections in the grid
are the edges in the graph; hence, the grid is entirely defined by the matrix A. For
example:

A =



X X X X
X X X X

X X X X X
X X X X
X X X X

X X X


Now that we can represent the fine grid, how do we select a coarse grid? With stan-
dard multigrid methods, smooth functions are geometrically or physically smooth;
they have a low spatial frequency. In these cases, we assume that relaxation smooths
the error and we select a coarse grid that represents smooth functions accurately. We
then choose intergrid operators that accurately transfer smooth functions between
grids.

With AMG, the approach is different. We first select a relaxation scheme that allows
us to determine the nature of the smooth error. Because we do not have access to a
physical grid, the sense of smoothness must be defined algebraically. The next step
is to use this sense of smoothness to select coarse grids, which will be subsets of the
unknowns. A related issue is the choice of intergrid transfer operators that allow for
effective coarsening. Finally, we select the coarse-grid versions of the operator A, so
that coarse-grid correction has the same effect that it has in geometric multigrid: it
must eliminate the error components in the range of the interpolation operator.

Algebraic Smoothness

Having chosen a relaxation scheme, the crux of the problem is to determine what is
meant by smooth error. If the problem provides no geometric information (for ex-
ample, true grid point locations are unknown), then we cannot simply examine the
Fourier modes of the error. Instead, we must proceed by analogy. In the geometric
case, the most important property of smooth error is that it is not effectively reduced
by relaxation. Thus, we now define smooth error loosely to be any error that is not
reduced effectively by relaxation.

That was simple. Of course, we still need to figure out exactly what this definition
means. To do this in the simplest case, we focus on weighted point Jacobi relax-
ation. We also assume that A is a symmetric M -matrix: it is symmetric

(
AT = A

)
and positive-definite

(
uTAu > 0 for all u ̸= 0) and has positive diagonal entries

and non-positive off-diagonal entries. These properties are shared by matrices aris-
ing from the discretization of many (not all) scalar elliptic differential equations.
These assumptions are not necessary for AMG to work. However, the original the-
ory of AMG was developed for symmetric M-matrices, and if A is far from being an
M-matrix, it is less likely that standard AMG will be effective in solving the problem.

49

By our definition, algebraic smoothness means that the size of ei+1 is not signifi-
cantly less than that of ei. We need to be more specific about the concept of size.
A natural choice is to measure the error in the A-norm, which is induced by the
A-inner product. We have that:

∥e∥A = (Ae, e)1/2

It can be derived that it is possible to write this condition loosely as:

Ae ≈ 0

and read it as meaning that smooth error has relatively small residuals.

Influence and Dependence

Most of AMG rests on two fundamental concepts. We have just discussed the first
concept, namely, smooth error. The second important concept is that of strong de-
pendence or strong influence. Because of the dominance of the diagonal entry (A is
an M-matrix), we associate the i- th equation with the i-th unknown. The job of
the i-th equation is to determine the value of ui. Of course, it usually takes all of
the equations to determine any given variable precisely. Nevertheless, our first task
is to determine which other variables are most important in the i-th equation, which
uj are most important in the i-th equation in determining ui?

One answer to this question lies in the following observation: if the coefficient, aij ,
which multiplies uj in the i-th equation, is large relative to the other coefficients
in the i-th equation, then a small change in the value of uj has more effect on the
value of ui than a small change in other variables in the i-th equation. Intuitively,
it seems logical that a variable whose value is instrumental in determining the value
for ui would be a good value to use in the interpolation of ui. Hence, such a variable
(point) should be a candidate for a coarse-grid point. This observation suggests the
following definition.

Definition 1. Given a threshold value 0 < θ ≤ 1, the variable (point) ui strongly
depends on the variable (point) uj if

−aij ≥ θmax
k ̸=i
{−aik}

This says that grid point i strongly depends on grid point j if the coefficient aij is
comparable in magnitude to the largest off-diagonal coefficient in the i th equation.
We can state this definition from another perspective.

Definition 2. If the variable ui strongly depends on the variable uj , then the
variable uj strongly influences the variable ui.

With the twin concepts of smooth error and strong influence/dependence in hand,
we can return to the task of defining the multigrid components for AMG. As with

50 CHAPTER 4. ALGEBRAIC MULTIGRID METHODS

any multigrid algorithm, we begin by defining a two-grid algorithm, then proceed to
multigrid by recursion. Having defined the relaxation scheme, we have several tasks
before us:

• Select a coarse grid so that the smooth components can be represented accu-
rately;

• Define an interpolation operator so that the smooth components can be accu-
rately transferred from the coarse grid to the fine grid;

• Define a restriction operator and a coarse-grid version of A using the variational
properties.

Defining the Interpolation Operator

Assume for the moment that we have already designated the coarse-grid points.
This means that we have a partitioning of the indices {1, 2, . . . , n} = C ∪ F , where
the variables (points) corresponding to i ∈ C are the coarse-grid variables. These
coarse-grid variables are also fine-grid variables and the indices i ∈ F represent those
variables that are only fine-grid variables. Next, suppose that ei, i ∈ C, is a set of
values on the coarse grid representing a smooth error that must be interpolated to
the fine grid, C ∪F . What do we know about ei that allows us to build an interpola-
tion operator that is accurate? With geometric multigrid, we use linear interpolation
between the coarse grid points. With an unstructured, or perhaps nonexistent, grid,
the answer is not so obvious.

If a C-point j strongly influences an F -point i, then the value ej contributes heavily
to the value of ei in the i-th (fine-grid) equation. It seems reasonable that the value
ej in the coarse-grid equation could therefore be used in an interpolation formula to
approximate the fine-grid value ei. This idea can be strengthened by noting that the
following bound must hold for smooth error on average, that is, for most i:∑

j ̸=i

(
|aij |
aii

)(
ei − ej
ei

)2

≪ 1, 1 ≤ i ≤ n

The left side of the inequality is a sum of products of non-negative terms. These
products must be very small, which means that one or both of the factors in each
product must be small. But if ei strongly depends on ej , we know that −aij could
be comparable to aii. Therefore, for these strongly influencing ej ’s, it must be true
that ei − ej is small, so ej ≈ ei.

We describe this by saying that smooth error varies slowly in the direction of strong
connection. Thus, we have a justification for the idea that the fine-grid quantity ui
can be interpolated from the coarse-grid quantity uj if i strongly depends on j.

For each fine-grid point i, we define Ni, the neighborhood of i, to be the set of
all points j ̸= i such that aij ̸= 0. These points can be divided into three categories:

• The neighboring coarse-grid points that strongly influence i. This is the coarse
interpolatory set for i, denoted by Ci.

51

• The neighboring fine-grid points that strongly influence i, denoted by Ds
i ; and

• The points that do not strongly influence i, denoted by Dw
i ; this set may

contain both coarse- and fine-grid points; it is called the set of weakly connected
neighbors.

The goal is to define the interpolation operator Ih2h (although physical grids may not
be present, we continue to denote fine-grid quantities by h and coarse-grid quantities
by 2h). We require that the i th component of Ih2he be given by:

(
Ih2he

)
i
=


ei if i ∈ C,∑

j∈Ci

ωijej if i ∈ F,

where the interpolation weights, ωij , must now be determined.

Recall that the main characteristic of smooth error is that the residual is small:
r ≈ 0. We can write the i-th component of this condition as:

aiiei ≈ −
∑
j∈Ni

aijej

Splitting the sum into its component sums over the coarse interpolatory set, Ci, the
fine-grid points with strong influence, Ds

i , and the weakly connected neighbors, Dw
i ,

we have:
aiiei ≈ −

∑
j∈Ci

aijej −
∑
j∈Ds

i

aijej −
∑
j∈Dw

i

aijej

To determine the ωij , we need to replace the ej in the second and third sums on the
right side of the last equation with approximations in terms of ei or ej , where j ∈ Ci.

Consider the third sum over points that are weakly connected to point i. We dis-
tribute these terms to the diagonal coefficient; that is, we simply replace ej in the
rightmost sum by ei, giving:aii + ∑

j∈Dw
i

aij

 ei ≈ −
∑
j∈Ci

aijej −
∑
j∈Ds

i

aijej (4.1)

We can justify this distribution in the following way. Suppose we have underesti-
mated the dependence, so that ei does depend strongly on the value of the points
in Dw

i . Then the fact that smooth error varies slowly in the direction of strong
dependence means that ei ≈ ej and the distribution to the diagonal makes sense.
Alternatively, suppose the value of ei does not depend strongly on the points in Dw

i .
Then the corresponding value of aij will be small and any error committed in making
this assignment will be relatively insignificant.

Treating the second sum over Ds
i is a bit more complicated because we must be

more careful with these strong connections. We might simply distribute these terms
to the diagonal, and, indeed, this would work nicely for many problems. However,

52 CHAPTER 4. ALGEBRAIC MULTIGRID METHODS

experience has shown that it is better to distribute the terms in Ds
i to Ci. Essen-

tially, we want to approximate the ej ’s in this sum with weighted sums of the ek for
k ∈ Ci. That is, we want to replace each ej , where j is a fine-grid point that strongly
influences i, with a linear combination of values of ek from the coarse interpolatory
set of the point i. We do this, for each fixed j ∈ Ds

i , by making the approximation:

ej ≈
∑

k∈Ci
ajkek∑

k∈Ci
ajk

(4.2)

The numerator is appropriate because the ej are strongly influenced by the ek in
proportion to the matrix entries ajk. The denominator is chosen to ensure that
the approximation interpolates constants exactly. Notice that this approximation
requires that if i and j are any two strongly connected fine-grid points, then they
must have at least one point common to their coarse interpolatory sets Ci and Cj .
If we now substitute (4.2) into (4.1) and engage in a spate of algebra, we find that
the interpolation weights are given by

ωij = −
aij +

∑
m∈Ds

i

(
aimamj∑
k∈Ci

amk

)
aii +

∑
n∈Dw

i
ain

.

In the context of Algebraic Multigrid (AMG) methods, ωij represents an element of
the interpolation matrix, which is crucial in the process of transferring information
between different grid levels. Each ωij essentially determines the weight or influence
of the coarse grid variable uj on the fine grid variable ui during the interpolation
process. These weights are not related to the frequency of any quantity, but instead,
they are computed based on the strength of connections between different variables
and the smoothness of the error. The interpolation matrix, populated with these ωij

weights, is used to approximate the values of the fine grid variables using the values
of the coarse grid variables. Therefore, ωij plays a key role in the effectiveness and
accuracy of the AMG method.

Selecting the Coarse Grid

The preceding discussion of the interpolation operator assumed that we had already
designated points of the coarse grid. We must now turn our attention to this crit-
ical task. We use the twin concepts of strong influence/dependence and smooth
error, just as we did in defining interpolation. As in the geometric problem, we rely
on the fundamental premise that the coarse grid must be one with the following
characteristics:

• On which smooth error can be approximated accurately;

• From which smooth functions can be interpolated accurately;

• It has substantially fewer points than the fine grid, so that the residual problem
may be solved with relatively little expense.

The basic idea is straightforward. By examining the suitability of each grid point to
be a point of one of the Ci sets, we make an initial partitioning of the grid points

53

into C-and F -points. Then, as the interpolation operator is constructed, we make
adjustments to this partitioning, changing points initially chosen as F -points to be
C-points in order to ensure that the partitioning conforms to certain heuristic rules.

Before we can describe the coarsening process in detail, we need to make two more
definitions and to introduce these heuristics. Denote by Si the set of points that
strongly influence i, the points on which the point i strongly depends. Also denote
by ST

i the set of points that strongly depend on the point i. Armed with these defini-
tions, we describe two heuristic criteria that guide the initial selection of the C-points:

H-1: For each F -point i, every point j ∈ Si that strongly influences i either should
be in the coarse interpolatory set Ci or should strongly depend on at least one point
in Ci.

H-2: The set of coarse points C should be a maximal subset of all points with
the property that no C-point strongly depends on another C-point.

To motivate heuristic H-1, we examine the approximation (4.2) that was made in de-
veloping the interpolation formula. Recall that this approximation applies to points
j ∈ Ds

i that consist of F -points strongly influencing the F -point i. Because ei de-
pends on these points, their values must be represented in the interpolation formula
in order to achieve accurate interpolation. But because they have not been chosen as
C-points, they are represented in the interpolation formula only by distributing their
values to points in Ci using (4.2). It seems evident that (4.2) will be more accurate
if j is strongly dependent on several points in Ci. However, for the approximation to
be made at all, j must be strongly dependent on at least one point in Ci. Heuristic
H-1 simply ensures that this occurs.

Heuristic H-2 is designed to strike a balance on the size of the coarse grid. Multigrid
efficiency is generally controlled by two properties: convergence factor and number
of WUs per cycle. If the coarse grid is a large fraction of the total points, then the
interpolation of smooth errors is likely to be very accurate, which, in turn, generally
produces better convergence factors. However, relatively large coarse grids generally
mean a prohibitively large amount of work in doing V-cycles. By requiring that
no C-point strongly depends on another, H− 2 controls the size of the coarse grid
because C-points tend to be farther apart. By requiring C to be a maximal subset
(that is, no other point can be added to C without violating the ban on mutual
strong dependence), H− 2 ensures that C is big enough to produce good conver-
gence factors.

It is not always possible to enforce both H-1 and H-2. Because the interpola-
tion formula depends on H− 1 being satisfied, we choose to enforce H-1 rigorously,
while using H-2 as a guide. While this choice may lead to larger coarse grids than
necessary, experience shows that this trade-off between accuracy and expense is gen-
erally worthwhile.

The basic coarse-point selection algorithm proceeds in two passes. We first make

54 CHAPTER 4. ALGEBRAIC MULTIGRID METHODS

an initial coloring of the grid points by choosing a preliminary partition into C and
F -points. The goal in the first pass is to create a set of C-points that have good
approximation properties and also tend to satisfy H-2. Once the initial assignments
have been made, we make a second pass, changing initial F -points to C-points as
necessary to enforce H-1.

The Coloring Scheme

The first pass begins by assigning to each point i a measure of its potential quality
as a C-point. There are several ways we can make this assessment, but the simplest
is to count the number of other points strongly influenced by i. Because those points
are the members of ST

i , this count, λi, is the cardinality of ST
i . Once the measures

λi have been determined, we select a point with maximum λi value as the first point
in C.

The point we just selected strongly influences several of the other points and should
appear in the interpolation formula for each of them. This implies that the points
that depend strongly on i should become F -points. We therefore assign all points in
ST
i to F , which is permissible because we already have a C-point, i, that strongly

influences them. It is logical to look at other points that strongly influence these
new F -points as potential C-points, because their values could be useful for accurate
interpolations. Therefore, for each new F -point j in ST

i , we increment the measure,
λk, of each unassigned point k that strongly influences j, this would be each unas-
signed member of k ∈ Sj .

The process is then repeated. A new unassigned point i is found with maximum
λi and it is assigned to C. The unassigned points j ∈ ST

i are then assigned to F
and the measures of the unassigned points in Sj are incremented by 1. This process
continues until all points have been assigned to C or F .

It is useful to observe that the coarsening determined by this method depends on
several factors. Among the most influential is the order in which the grid points are
scanned when seeking the next point with maximal λ. Because many, if not most,
of the grid points will have the maximal value at the start, any of them could be
selected as the first coarse point. Once the first point is selected, the rest proceeds
as outlined. Again, any time there is more than one point having the maximal value,
there are many possible coarsenings. The heuristics ensure that whatever specific
coarse grid is obtained, it will have the desired properties: it provides a good rep-
resentation of smooth error components, while keeping the size of the coarse grid
reasonably small.

Coarse-Grid Operators

Recall that although physical grids may not be present, we continue to denote fine-
grid quantities by h and coarse-grid quantities by 2h. Once the coarse grid is chosen
and the interpolation operator Ih2h is constructed, the restriction operator I2hh is

55

defined using the usual variational property:

I2hh =
(
Ih2h

)T
The coarse-grid operator is constructed using the Galerkin condition:

A2h = I2hh AhIh2h

The reason for defining interpolation and the coarse operator by these variational
principle is that the resulting coarse-grid correction is optimal in the Ah-norm.

Cycling Algorithms

We have now defined all the components necessary to create a two-grid correction
algorithm for AMG: a relaxation scheme, a set of coarse-grid points C, a coarseg-
rid operator A2h, and intergrid transfer operators I2hh and Ih2h. Although we have
discussed weighted Jacobi, Gauss-Seidel relaxation is often preferred. The two-grid
correction algorithm appears exactly as it did for geometric multigrid, as shown
below.

AMG Two-Grid Correction Cycle

vh ← AMG
(
vh, fh

)
.

• Relax ν1 times on Ahuh = fh with initial guess vh.

• Compute the fine-grid residual rh = fh − Ahvh and restrict it to the coarse
grid by r2h = I2hh rh.

• Solve A2he2h = r2h on Ω2h.

• Interpolate the coarse-grid error to the fine grid by eh = Ih2he
2h and correct the

fine-grid approximation by vh ← vh + eh.

• Relax ν2 times on Ahuh = fh with initial guess vh.

Having defined the two-grid correction algorithm, we can define other multigrid cy-
cling schemes for AMG guided by geometric multigrid. For example, to create a
V-cycle algorithm, we simply replace the direct solution of the coarse-grid problem
with a recursive call to AMG on all grids except the coarsest grid, where we use
a direct solver. W-cycles, µ-cycles, and FMG-cycles can also be created by strict
analogy to the geometric multigrid case.

Parallel Coarsening Algorithms

C-AMG coarsening algorithm is inherently sequential. There are several parallel
algorithms (in hypre):

56 CHAPTER 4. ALGEBRAIC MULTIGRID METHODS

• CLJP (Cleary-Luby-Jones-Plassmann): one-pass approach with random num-
bers to get concurrency.

• Falgout-C-AMG on processor interior, then CLJP to finish.

• CGC (Griebel, Metsch, Schweitzer): compute several coarse grids on each pro-
cessor, then solve a global graph problem to select the grids with the best
"fit.

Other parallel AMG codes use similar approaches.

Take home message

In Algebraic Multigrid (AMG), the construction of the multigrid hierarchy is carried
out using only information from the matrix and not from the geometry of the prob-
lem. This approach has optimal convergence and good scaling potential with linear
complexity. However, exposing high parallelism is not easy at "too coarse" levels.
To achieve parallelism, additional restrictions on AMG algorithmic development are
necessary.

Chapter 5

Domain Decomposition Methods

Alternating Schwarz Method

Consider (an elliptic) partial differential equation of the form:

Lu = f inΩ = Ω1 ∪ Ω2

with boundary condition u = g on ∂Ω.
Given u(0)

1) On Ω1 solve


Lu

(k+ 1
2)

1 = f in Ω1

u
(k+ 1

2)
1 = g in ∂Ω1\Γ1

u
(k+ 1

2)
1 = u

(k)
2 in Γ1

2) On Ω2 solve


Lu

(k+1)
2 = f in Ω2

u
(k+1)
2 = g in ∂Ω2\Γ2

u
(k+1)
2 = u

(k+ 1
2)

1 in Γ2

3) Define u(k+1) =

{
u
(k+ 1

2)
1 in Ω\Ω2

u
(k+1)
2 in Ω2

Schwarz proposed a method in 1870 to deal with regions for which analytical solu-
tions are not known. This method involves alternating iterations until convergence to
the solution on the entire domain. Today, this method is of interest in its discretized
form, as it suggests one of two major paradigms for solving PDEs numerically by
domain decomposition. The two paradigms are overlapping subdomains (Schwarz)
and non-overlapping subdomains (Schur).
For i = 1, 2, let Si be set of ni indices of grid points in the interior of Ωi, where
ni = |Si|. Because subdomains overlap, S1 ∩ S2 ̸= ∅ and n1 + n2 > n.

57

58 CHAPTER 5. DOMAIN DECOMPOSITION METHODS

Discretized Schwarz Methods

Let I be the set of indices of grid points in the interior of Ω, where |I| = N . Because
subdomains overlap, I =

⋃m
i=1 Ii and Ii∩ Ij ̸= ∅ for some i ̸= j. For i = 1, . . . ,m, let

Ri be the Boolean restriction matrix such that for any vector x ∈ RN , Rix contains
precisely those components of x corresponding to indices in Ii (i.e., those components
associated with nodes in Ωi).

Conversely, let Ei be the extension matrix that expands the vector vi into a vec-
tor v = Eivi ∈ RN , whose components corresponding to indices in Ii are the same as
those of vi, and whose remaining components are all zero. The principal submatri-
ces of A corresponding to two subdomains are given by Ai = RiAR

T
i ∈ Rni×ni , for

i = 1, 2.

For the discretized problem, the alternating Schwarz iteration takes the following
form:

x(k+
1
2
) = x(k) +RT

1A
−1
1 R1(b−Ax(k))

x(k+1) = x(k+
1
2
) +RT

2A
−1
2 R2(b−Ax(k+

1
2
))

This method is analogous to block Gauss-Seidel, but with overlapping blocks. The
method is known as the multiplicative Schwarz method. Overall, the error is up-
dated as e(k) = x − x(k), e(k+1) = BMSe(k), where BMS = (I − RT

2A
−1
2 R2A)(I −

RT
1A

−1
1 R1A).

We have as yet achieved no parallelism, since two subproblems must be solved se-
quentially for each iteration, but instead of Gauss-Seidel, we can use the block Jacobi
approach:

x(k+
1
2
) = x(k) +RT

1A
−1
1 R1(b−Ax(k))

x(k+1) = x(k+
1
2
) +RT

2A
−1
2 R2(b−Ax(k))

whose subproblems can be solved simultaneously. The method is known as the ad-
ditive Schwarz method. Overall, the error is updated as e(k) = x − x(k), e(k+1) =
BASe(k), where BAS = (RT

2A
−1
2 R2 +RT

1A
−1
1 R1)A.

With either Gauss-Seidel or Jacobi version, it can be shown that iteration con-
verges at rate independent of mesh size, provided overlap area between subdomains
is sufficiently large and the mesh is refined uniformly.

Additive Schwarz Method and preconditioner

x(k+
1
2) = x(k) +RT

1A
−1
1 R1

(
b−Ax(k)

)
x(k+1) = x(k+

1
2) +RT

2A
−1
2 R2

(
b−Ax(k)

)

59

Eliminate x(k+
1
2) in the Additive Schwarz Methods to obtain:

x(k+1) = x(k) +RT
1A

−1
1 R1

(
b−Ax(k)

)
+RT

2A
−1
2 R2

(
b−Ax(k)

)
= x(k) +

(
RT

1A
−1
1 R1 +RT

2A
−1
2 R2

) (
b−Ax(k)

)
= x(k) +

(
RT

1A
−1
1 R1 +RT

2A
−1
2 R2

) (
r(k)
)

= x(k) + P−1
ad r(k)

which is just a Richardson iteration with additive Schwarz preconditioner with P−1
ad =(

RT
1A

−1
1 R1 +RT

2A
−1
2 R2

)
.

x(k+1) = x(k) + P−1
ad r(k) k ≥ 0

Symmetrized Multiplicative Schwarz preconditioner

x(k+1) = x(k) + αkP
−1
ad r(k) k ≥ 0

Remark: Symmetry of preconditioner means that it can be used also in conjunction
with PCG, with preconditioner Pad to accelerate convergence.

x(k+
1
2) = x(k) +RT

1A
−1
1 R1

(
b−Ax(k)

)
x(k+1) = x(k+

1
2) +RT

2A
−1
2 R2

(
b−Ax(k+

1
2)
)

The multiplicative Schwarz iteration matrix is not symmetric, but can be made
symmetric by additional step with A−1

1 each iteration.

x(k+
1
3) = x(k) +RT

1A
−1
1 R1

(
b−Ax(k)

)
x(k+2/3) = x(k+

1
3) +RT

2A
−1
2 R2

(
b−Ax(k+1/3)

)
x(k+1) = x(k+

2
3) +RT

1A
−1
1 R1

(
b−Ax(k+2/3)

)
which yields to a symmetric preconditioner that can be used in conjunction with
PCG to accelerate convergence.

x(k+1) = x(k) + αkP
−1
mus r

(k) k ≥ 0

Many Overlapping Subdomains

To achieve a higher degree of parallelism with the Schwarz method, we can apply a
two-domain algorithm recursively or use many subdomains. If there are p overlapping
subdomains, then we define matrices Ri and Ai as before, where i = 1, . . . , p. The
Additive Schwarz preconditioner then takes the form

P−1
ad =

∑
i=1,...,p

RT
i A

−1
i Ri

60 CHAPTER 5. DOMAIN DECOMPOSITION METHODS

The resulting generalization of the block-Jacobi iteration is highly parallel, but not
algorithmically scalable because the convergence rate degrades as p grows. The con-
vergence rate can be restored by using a coarse grid correction to provide global
coupling.
Multiplicative Schwarz iteration for p domains is defined analogously. As with clas-
sical Gauss-Seidel vs. Jacobi, multiplicative Schwarz has a faster convergence rate
than the corresponding additive Schwarz (though it still requires coarse grid correc-
tion to remain scalable). Unfortunately, multiplicative Schwarz appears to provide
no parallelism, as p sub-problems per iteration must be solved sequentially. As with
classical Gauss-Seidel, parallelism can be introduced by coloring subdomains to iden-
tify independent sub-problems that can be solved simultaneously.

Colouring techniques

The multiplicative Schwarz preconditioner is inherently serial. In order to identify
a set of subdomains that can be processed concurrently, we must use a subdomain
coloring mechanism. This may limit the degree of parallelism if there is a low number
of subdomains per color. In general, the Multiplicative Schwarz method converges
faster than the Additive Schwarz method, while the latter can result in better parallel
speedup.

Non Overlapping Subdomains

We now consider adjacent subdomains whose only points in common are along their
mutual boundary Γ. We partition the indices of unknowns in the corresponding
discrete linear system into three sets: S1 corresponding to interior nodes in Ω1, S2
corresponding to interior nodes in Ω2, and SΓ corresponding to interface nodes in Γ.

Partitioning the matrix and right-hand side vector accordingly, we obtain a symmet-
ric block linear system. A11 0 A1Γ

0 A22 A2Γ

AT
1Γ AT

2Γ AΓΓ

 x1

x2

xΓ

 =

 b1

b2

bΓ



61

Zero blocks result from assumption that nodes in Ω1 are not directly connected to
nodes in Ω2, but only through interface nodes in Γ.
Block LU factorization of matrix A yields: A11 0 A1Γ

0 A22 A2Γ

AT
1Γ AT

2Γ AΓΓ

 =

 I 0 0
0 I 0

AT
1Γ A−1

11 I

 A11 0 A1Γ

0 A22 A2Γ

0 0 S


where S is the schur complement:

S = AΓΓ −AT
1ΓA

−1
11 A1Γ −AT

2ΓA
−1
22 A2Γ.

We can now determine interface unknowns uΓ by solving system:

SxΓ = b̃Γ

where:
b̃Γ = bΓ −AT

1ΓA
−1
11 b1 −AT

2ΓA
−1
22 b2

The remaining unknowns (which can be computed simultaneously) are then given
by:

x1 = A−1
11 (b1 −A1ΓxΓ)

x2 = A−1
22 (b2 −A2ΓxΓ)

The schur complement system: remarks

The Schur complement matrix S is expensive to compute and is generally dense even
if A is sparse. If the Schur complement system SxΓ = b̃Γ is solved iteratively, then S
need not be formed explicitly. The Schur complement system, denoted as SxΓ = b̃Γ,
is a system of linear equations. Solving this system directly would require forming
the matrix S, which is computationally expensive, especially if S is a large matrix.
However, if we use iterative methods to solve this system, such as the Conjugate
Gradient method or the Gauss-Seidel method, we don’t need to form the matrix
S explicitly. These iterative methods only require the result of a matrix-vector
multiplication at each step. Matrix-vector multiplication by S requires the solution
in each subdomain, implicitly involving A−1

11 and A−1
22 , which can be done in parallel.

The condition number of S is generally better than that of A, typically O
(
h−1

)
instead of O

(
h−2

)
for mesh size h. In practice, suitable interface pre-conditioners

are still needed to accelerate convergence. The term "interface preconditioners" refers
to preconditioners that are specifically designed for problems where the domain is
divided into subdomains, and the preconditioner operates on the "interface" between
these subdomains.

Many Non-Overlapping Subdomains

To improve parallelism with the Schur method, we can use many subdomains. If
there are p non-overlapping subdomains, let I be the set of indices of interior nodes
of subdomains and, as before, let Γ be the set of indices of interface nodes. Then

62 CHAPTER 5. DOMAIN DECOMPOSITION METHODS

the discrete linear system has the following block form:

(
AII AIΓ

AT
IΓ AΓΓ

)(
xI

xΓ

)
=

(
bI

bΓ

)
The matrix AII is block diagonal and has the following structure:

AII =


A11 0 . . . 0
0 A22 . . . 0

0
...

. . . 0
0 . . . 0 App


As before, block LU factorization of matrix A yields a system:

SxΓ = b̃Γ

where the Schur complement matrix S is given by

S = AΓΓ −AT
IΓA

−1
II AIΓ.

This system can be solved again iteratively without forming S explicitly. Suitable
interface preconditioners can be used to accelerate convergence. Interior unknowns
are then given by:

xI = A−1
II (bI −AIΓxΓ) .

All the occurrences of A−1
II can be performed on all subdomains in parallel because

AII is block diagonal.

How to evaluate the efficiency of a domain decomposition?

Weak scalability refers to how the solution time varies with the number of processors
for a fixed problem size per processor. It is not achieved with the one-level method.
When we say a method doesn’t achieve weak scalability, it means that as we increase
the number of processors, the time to solution does not remain constant even though
each processor is working on a fixed size of the problem. In an ideal weakly scalable
system, if we double the number of processors and double the size of the problem,
the time to solution should remain the same. However, if a method doesn’t achieve
weak scalability, then doubling the number of processors and the size of the problem
would lead to an increase in the time to solution. Without the coarse correction, the
iteration count increases linearly with the number of subdomains.

Chapter 6

Direct methods for sparse linear
systems

LU factorization

LetAp,i ∈ Ri,i, i = 1, . . . , n be the principal sub-matrices ofA obtained by considering
the first rows and columns

a11 . . . a1i . . . a1n
...

ai1 . . . aii
...

an1 ann


det (Ap,i) ̸= 0∀i = 1, . . . , n− 1

LU factorization. Let A be a square matrix. An LU factorization refers to the
factorization of A into two factors: a lower unitary triangular matrix L and an upper
triangular matrix: A = LU .

Theorem: If A is invertible, then it admits an LU factorization if and only if all its
leading principal minors are nonzero.

Gaussian elimination

It consists of a sequence of operations (swapping two rows, multiplying a row by a
nonzero number, adding a multiple of one row to another row) performed on the
corresponding matrix of coefficients, so as to "transform" A into an upper triangular
matrix

(
A(n) = U

)
.

For k = 1, . . . , n
A(1) = A→ A(2) → . . .→ A(k) → A(k+1) → . . .→ A(n) = U .
b(1) = b→ b(2) → . . .→ b(k) → b(k+1) → . . .→ b(n) = y.

To do this in practice, a multiple of row k is subtracted from the subsequent rows in
order to cancel the desired elements.

63

64 CHAPTER 6. DIRECT METHODS FOR SPARSE LINEAR SYSTEMS

For k = 1, . . . , n− 1
For i = k + 1, . . . , n

lik =
a
(k)
ik

a
(k)
kk

For j = k + 1, . . . , n

a
(k+1)
ij = a

(k)
ij − lika

(k)
kj

b
(k+1)
i = b

(k)
i − likb

(k)
k

After n steps we have: A(n) = U , lij → L, b(n) = y.

A practical example

Gaussian Elimination

A =

 1 1/2 1/3
1/2 1/3 1/4
1/3 1/4 1/5

 b =

 11/6
13/12
47/60



−→ A(2) =

 1 1/2 1/3
0 1/12 1/12
0 1/12 4/45

 b(2) =

 11/6
1/6

31/180


−→ U = A(3) =

 1 1/2 1/3
0 1/12 1/12
0 0 1/180

 y = b(3) =

 11/6
1/6
1/180


Backward substitution

x3 =
1/180

1/180
= 1 −→ x2 =

1/6− 1/12 · 1
1/12

= 1

−→ x1 =
11/6− 1/2 · 1− 1/3 · 1

1
= 1

Gaussian elimination: computational costs

For any
k = 1, . . . , n

n−1∑
k=1

k +
(
2(n− k)2 + 3(n− k)

)
=

n−1∑
p=1

k +
(
2p2 + 3p

)
=

= k(n− 1) + 2
n(n− 1)(2n− 1)

6
+ 3

n(n− 1)

2
∼ 2/3n3

Sufficient conditions for Gaussian elimination

1. A is strictly diagonally dominant by rows/columns.

2. A is SPD.

65

Cholesky factorisation (A is SPD)

Let A be a SPD matrix of order n. Then, there exists a unique upper triangular
matrix R with real and positive diagonal entries such that: A = RTR.

Let r11 =
√
a11.

For j = 2, . . . , n

rij =
1

rii

(
aij −

i−1∑
k=1

rkirkj

)
, i = 1, . . . , j − 1

rjj =

√√√√ajj −
j−1∑
k=1

r2kj

Computational cost ≈ n3/3

Pivoting

Pivoting Techniques

If at the step k of Gaussian Elimination the pivotal element a(k)kk = 0 then the
algorithm switches row k with row i > k, where the index i is chosen so that a(k)ik ̸= 0.

Pivoting by rows

As a matter of fact, if at step k row k is swapped with row i > k, it is equivalent to
pre-multiplying A(k) by a matrix obtained by exchanging the k-th and i-th rows in
the identity matrix:

A = A(1) → P (1)A(1) → A(2) → P (2)A(2) → A(3) → . . .→ A(n)

P = P (n−1)P (n−2) . . . P (1)

The pivotal element should be as large as possible to "avoid" round-off errors. In
practice:

• Do pivoting even when it is not strictly needed
(
a
(k)
kk ̸= 0

)
.

• Swap the row k with the row ī, where ī is chosen to maximize
∣∣∣a(k)ik

∣∣∣ for i =
k, . . . , n.

Complete pivoting

Complete pivoting searches for the largest element in magnitude in the entire re-
maining submatrix, not just in a particular row or column, and then swaps rows
and columns to place that value in the upper left position. This is equivalent to
introducing a second permutation matrix Q:

PAQ = LU.

Ax = b⇔ PAQ︸ ︷︷ ︸
LU

Q−1x︸ ︷︷ ︸
x∗

= Pb =⇒ Ly = Pb Ux∗ = y x = Qx∗

66 CHAPTER 6. DIRECT METHODS FOR SPARSE LINEAR SYSTEMS

Fill-in

When A is sparse, LU decomposition results in L,U with non-zeros (called fill-in) at
positions that were originally zero.
Gaussian Elimination (in its plain version) is made in such a way as to memorise L
and U by overwriting the space allocated for A.
LU factorisation is not suitable from the point of view of memory occupation for
sparse matrices.

Fill-in reduction strategies

To reduce fill-in, it may be useful to employ reordering techniques, which consists in
numbering the rows of A differently. The aim is to reduce the number of non-zeros
in L,U by permuting the nonzero structure of A into a special form and respecting
this form when performing the reordering.

Sparse direct methods

The sequence in which variables are arranged can significantly impact the efficiency
of numerical computations. This influence stems from variable ordering affecting
several critical aspects, including the elimination tree, parallelism, computation, and
memory usage.
The elimination tree, a data structure representing the nonzero structure of a matrix
used in sparse matrix factorization, plays a pivotal role. It aids in estimating storage
and computational requirements, ascertaining dependencies between columns, facil-
itating parallel processing, and enabling advanced sparsification techniques.
Hence, dedicating time to matrix analysis before embarking on factorization proves
advantageous. However, it’s vital to recognize that determining the optimal ordering
to minimize fill-in (the introduction of new non-zero elements in factored matrices) is
a challenging NP-hard problem, lacking an efficient solution algorithm. Nonetheless,
heuristics can be deployed to investigate and optimize tree topology, including node
count and sizes.
To solve a system of linear equations represented as Ax = b, three primary phases
are involved:

1. Analysis of matrix A (symbolic phase): This phase encompasses identifying
suitable permutation matrices P and Q based on A’s nonzero structure to
minimize fill-in. It entails computing the elimination tree and preparing for
parallel execution by mapping tree nodes to different processors. Each proces-
sor then configures its local data structures accordingly.

2. Factorization of A (numerical factorization): The factors are determined using
the elimination tree. It may be necessary to post-process (a-posteriori) modify
P and Q to ensure numerical stability. Numerical stability pertains to the
factorization process’s sensitivity to small changes in the input matrix or to
round-off errors during computation.

3. Forward/backward substitution: In this phase, we solve for x given b, utilizing
the factors obtained in phase 2.

67

The symbolic phase (idea)

The symbolic phase is an integral part of matrix factorization. The symbolic phase
typically involves two main steps:

1. Finding a good fill-reducing permutation. This involves identifying a permuta-
tion of the matrix’s rows and columns that minimizes the number of non-zero
elements that are introduced during factorization (known as "fill-in"). Minimiz-
ing fill-in can significantly reduce the computational and memory requirements
of the factorization process.

2. Once the ordering is found, the symbolic phase proceeds to determine the
elimination tree and the nonzero pattern of the factorization. In addition,
it identifies key properties such as the number of nonzeros in each row and
column of the factors. These insights can further optimize the factorization
process and are crucial for understanding the structure of the matrix.

The symbolic phase is less problematic compared to the numerical factorization
phase. For one, it is asymptotically faster. This means that as the problem size
increases, the time taken by the symbolic phase grows at a slower rate compared to
the numerical phase. Furthermore, the symbolic phase enables the numerical phase
to be more efficient in terms of time and memory. By determining the structure
and sparsity pattern of the matrix in advance, the symbolic phase allows for more
optimized computations during the numerical phase. Another significant advantage
of the symbolic phase is that it allows for the numeric factorization to be repeated for
a sequence of matrices with an identical nonzero pattern. This feature is particularly
useful when solving non-linear and/or differential equations, where the structure of
the matrix remains the same, but the actual values might change.

Fill-in reducing orderings

The fill-in minimization problem

The fill-in minimization problem can be stated as follows:

Given a matrix A, find a row and column permutation P and Q (with the added
constraint that Q = P T for a sparse Cholesky factorization) such that the number of
non-zeros in the factorization of PAQ (or the amount of work required to compute
it) are minimized.

Computing an ordering for the minimum fill is NP-hard, in its many forms. The
primary aim is to minimize the number of non-zero elements in the factorization,
also known as fill-in. This is because sparse matrices, which have many zero el-
ements, can be stored and manipulated more efficiently than dense matrices. By
minimizing fill-in, we maintain sparsity and thus save on storage and computational
resources.
Moreover, minimizing fill-in often also leads to a reduction in the computational work
required for the factorization. This is because operations with zero elements do not
need to be performed, so fewer non-zero elements means fewer operations. Therefore,

68 CHAPTER 6. DIRECT METHODS FOR SPARSE LINEAR SYSTEMS

while the primary aim is to minimize fill-in, this often also results in a reduction in
the time to compute the factorization. So, both aspects are interconnected. There
are many approaches to tackle this problem:

1. Symmetric minimum degree: This is a heuristic widely used for finding a
permutation P such that PAP T has fewer non-zeros in its factorization than
A. It is a greedy method that selects the pivot row and column with the
fewest non-zero elements during the course of a right-looking sparse Cholesky
factorization.

2. Unsymmetric minimum degree: This method is similar to symmetric min-
imum degree but it does not require the matrix to be symmetric. It is used
when the matrix A is not symmetric and we cannot apply symmetric minimum
degree.

3. Nested dissection: Consider the undirected graph of a matrix A with sym-
metric nonzero pattern. Nested dissection finds a vertex separator that splits
the graph into two or more roughly equal-sized subgraphs (left and right), when
the vertices in the separator (and their incident edges) are removed from the
graph. The subgraphs are then ordered recursively, which helps in reducing
fill-in during factorization. It can be applied only to symmetric matrices.

4. Permutations to block-triangular-form, and other special forms: This
approach involves permuting rows and columns of a matrix to bring it into a
block triangular form or other special forms which can simplify computations
or reduce fill-in during factorization.

Sparse matrices and graphs

Symmetric sparse matrices and graphs

The structure of a square symmetric matrix A with nonzero diagonal can be repre-
sented by an undirected graph G(A) = (V,E) with:

• n vertices, one for each row/column of A;

• an edge (i, j) for each nonzero aij , i > j.

69

Non-symmetric sparse matrices and graphs

The structure of a non-symmetric matrix of size n× n can be represented by:

• A directed graph G(A) = (V,E) with

– n vertices, one for each column of A.

– an edge from i to j for each nonzero aij .

• A bipartite graph H(A) = (V,E) with

– 2n vertices, for rows and columns of A

– an edge (i′, j) for each nonzero aij .

Filled graph G+(A), A SPD

Given G(A) = (V,E), G+(A) = (V,E+) is defined as follows: there is an edge
(i, j) ∈ G+(A) if and only if there is a path from i to j in G(A) going through lower
numbered vertices. The same definition holds also for directed graphs.

Useful remark: G
(
R+RT

)
= G+(A) (ignoring cancellations). "Ignoring can-

cellations" means that when constructing the graph G
(
R+RT

)
, we do not consider

the possibility that some elements in R+RT might cancel each other out and result
in a zero entry.

70 CHAPTER 6. DIRECT METHODS FOR SPARSE LINEAR SYSTEMS

Filled graph G+(A), A non-symmetric

A is square, non-symmetric (nonzero diagonal entries). The nonzero structure of L
and U can be determined prior to the numerical factorisation from the structure of
A.
Filled graph:

• Edges from rows to columns for all non-zeros of A.

• Add fill edge if there is a path from i to j in G(A) through lower numbered
vertices.

Remark: G
(
R+RT

)
= G+(A) (ignoring cancellations).

Steps of sparse Cholesky factorisation

1. Order rows and columns of to reduce fill-in.

2. Symbolic factorization (based on eliminaton trees).

• Compute the elimination tree.

• Allocate data structure.

• Compute the nonzero structure of the factor R.

3. Factorization.

4. Triangular solve.

Multifrontal direct methods

The multifrontal method is a technique used to simplify the factorization of sparse
matrices. It does this by breaking down the overall factorization into a series of
smaller, dense submatrix factorizations. This process is guided by an elimination
tree, which is a graphical representation of the dependencies between these partial
factorizations. The structure of the matrix and the ordering of the variables (also
known as permutations) determine this tree. Here’s a more detailed explanation:

• Each node in the tree represents a partial factorization of a small, dense matrix.

• Each edge in the tree signifies the transfer of data between these dense matrices.

71

• The tree establishes a partial order: a node can only be processed once all
its child nodes have been processed. This means that the leaves (the nodes
without any children) are processed first, while the root (the topmost node) is
processed last.

• Nodes that do not have an ancestor-descendant relationship can be processed
at the same time, allowing for parallel processing.

In simpler terms, this method organizes the complex task of matrix factorization into
manageable parts, following a specific order dictated by an elimination tree. This
not only makes the process more efficient but also opens up opportunities for parallel
computation.

See Slides Pack n. 6 Pages 36-51 for visualization.

Examples of direct solvers

An incomplete list of solvers and their characteristics:

• PSPASES: for SPD matrices, distributed memory.

• UMFPACK / SuiteSparse (Matlab, Google Ceres) - symmetric/nonsymmetric,
LU, QR, multicores/GPUs.

• SuperLU: non-symmetric matrices, shared/distributed memory.

• MUMPS: symmetric/non-symmetric, distributed memory.

• Pardiso (Intel MKL): symmetric/unsymmetric, shared/distributed memory.

72 CHAPTER 6. DIRECT METHODS FOR SPARSE LINEAR SYSTEMS

Chapter 7

Eigenvalue problems

The algebraic eigenvalue problem reads as follows:
Given a matrix A ∈ Cn×n, find (λ,x) ∈ C× Cn\{0} such that:

Av = λv

where λ is an eigenvalue of A and v (non-zero) is the corresponding eigenvector. The
set of all the eigenvalues of a matrix A is called the spectrum of A. The module of
the eigenvalue with the maximum one is called the spectral radius of A:

ρ(A) = max{|λ| : λ ∈ λ(A)}

Geometric interpretation

Eigenvalues and eigenvectors provide a means of understanding the complicated be-
havior of a general linear transformation by decomposing it into simpler actions.
An eigenvector (corresponding to a real nonzero eigenvalue) points in a direction in
which it is stretched by the linear transformation; the associated eigenvalue is the
factor by which it is "stretched/contracted".

Mathematical background

1. The problem Av = λv is equivalent to (A− λI)v = 0.

2. This homogeneous equation has a nonzero solution v if and only if its matrix
is singular. The eigenvalues of A are the values λ such that det(A− λI) = 0.

3. det(A−λI) = 0 is a polynomial of degree n in λ : it is called the characteristic
polynomial of A and its roots are the eigenvalues of A.

Some useful remarks

• From the Fundamental Theorem of Algebra, an n× n matrix A always has n
eigenvalues λi, i = 1, . . . , n.

• Each λi may be real but in general is a complex number.

73

74 CHAPTER 7. EIGENVALUE PROBLEMS

• The eigenvalues λ1, λ2, . . . , λn may not all have distinct values.

• Rayleigh quotient: Let (λi,vi) be an eigenpair of A, then:

λi =
vH
i Avi

vH
i vi

The exponent H indicates the conjugate transpose of a vector.

We first need to identify:

• What types of transformations preserve eigenvalues;

• For what types of matrices the eigenvalues are easily determined.

Definition: The matrix B is similar to the matrix A if there exists a nonsingular
matrix T such that B = T−1AT . With the above definition, it is trivial to show
that:

By = λy→ T−1ATy = λy→ A(Ty) = λ(Ty)

so that A and B have the same eigenvalues, and if y is an eigenvector of B, then
v = Ty is an eigenvector of A

Similarity transformations preserve eigenvalues but do not preserve eigenvec-
tors (but the eigenvectors can be easily recovered). Note that the converse is not
true: two matrices that have the same eigenvalues are not necessarily similar.
The eigenvalues of a diagonal matrix are its diagonal entries. The eigenvalues of a
triangular matrix are also the diagonal entries.
Note that:

• Diagonal form simplifies eigenvalue problems for general matrices by similarity
transformations.

• Some matrices cannot be transformed into diagonal form by a similarity trans-
formation.

A square matrix A is called diagonalisable (or non-defective) if it is similar to a
diagonal matrix.

The general idea from the numerical viewpoint

Some of numerical methods for computing eigenvalues and eigenvectors are based on
reducing the original matrix to a simpler form, whose eigenvalues and eigenvectors
can easily be determined.
Ideally we would like to transform the underlying system of equations into a special
set of coordinate axes in which the matrix is diagonal. The eigenvalues are therefore
entries of the diagonal matrix and the eigenvectors are the new set of coordinate
axes.

75

Computing eigenvalues and eigenvectors

There are several methods designed to compute all of the eigenvalues of a matrix
(and some of them require a great deal of work). In practice, one may need only
one or a few eigenvalues and the corresponding eigenvectors. The simplest method
for computing a single eigenvalue and eigenvector of a matrix is the so called power
method.

Power method

Assume that the matrix A has a unique eigenvalue λ1 of maximum absolute value,
i.e.

|λ1| > |λ2| ≥ |λ3| ≥ . . . |λn|

with the corresponding unitary eigenvector v1. Starting from a given nonzero vector
x(0), such that

∥∥x(0)
∥∥ = 1, let us consider the following iteration scheme, for k ≥ 0 :

y(k+1) ← Ax(k)

x(k+1) ← y(k+1)∥∥y(k+1)
∥∥

ν(k+1) ←
[
x(k+1)

]H
Ax(k+1)

It can be shown that the above iteration scheme converges to a multiple v1, the
eigenvector corresponding to the dominant eigenvalue λ1.

Hints of the Proof

1. Observe that since A is diagonalisable, its eigenvector vi forms a basis for Cn.

2. Express the starting vector x(0) as a linear combination of the eigenvectors.

3. Do some calculations to obtain:

yk = Akx(0) = α1λ
k
1

(
v1 +

n∑
i=2

αi

α1

[
λi
λ1

]k
vi

)
.

4. The term λ1 is the dominant eigenvalue, meaning its absolute value is larger
than the absolute values of all other eigenvalues. Because of this, as k increases,
the terms involving λi

λ1
for i > 1 will tend to zero (since | λi

λ1
| < 1), and the

iteration will converge to a multiple of v1, the eigenvector corresponding to
the dominant eigenvalue.

Convergence rate of the power method

The convergence rate of the power method depends on the ratio |λ2| / |λ1|, where λ2
is the eigenvalue having the second largest absolute value. The smaller |λ2| / |λ1| is,
the faster the convergence is.

76 CHAPTER 7. EIGENVALUE PROBLEMS

Hence the power method will converge quickly if |λ2| / |λ1| is small and slowly if
|λ2| / |λ1| is close to 1.

Theorem. Suppose |λ1| > |λ2| ≥ · · · ≥ |λm| ≥ 0 and vT
1 x

(0) ̸= 0. Then the
iterates of the Power Method satisfy:∥∥∥x(k) − (±v1)

∥∥∥ = O

(∣∣∣∣λ2λ1
∣∣∣∣k
)
,
∣∣∣λ(k) − λ1∣∣∣ = O

(∣∣∣∣λ2λ1
∣∣∣∣2k
)

as k →∞. The ± sign means that at each step k, one or the other choice of sign is
to be taken, and then the indicated bound holds. The reference for this theorem is
Theorem 27.1 from the Numerical Linear Algebra Book by Trefethen.

Deflation method

The elementary Householder tranformations can be conveniently employed to com-
pute the first (largest or smallest) eigenvalues of a given matrix A ∈ Rn×n. Assume
that the eigenvalues of A are ordered as previously stated and suppose that the eigen-
value/eigenvector pair (λ1,x1) has been computed using the power method. Then
the matrix A can be transformed into the following block form:

A1 = HAH =

(
λ1 bT

0 A2

)
where b ∈ Rn−1,H is the Householder matrix such that Hx1 = αx1 for some α ∈ R,
the matrix A2 ∈ R(n−1)×(n−1) and the eigenvalues of A2 are the same as those of A
except for λ1. The matrix H can be computed using with v = x1 ± ∥x1∥2 e1.

The deflation procedure consists of computing the second dominant (subdomi-
nant) eigenvalue of A by applying the power method to A2 provided that |λ2| ≠ |λ3|.
Once λ2 is available, the corresponding eigenvector x2 can be computed by applying
the inverse power iteration to the matrix A taking µ = λ2 and proceeding in the
same manner with the remaining eigenvalue/eigenvector pairs.

Inverse power method

For some applications, the smallest eigenvalue of a matrix is required rather than
the largest. We use the fact that the eigenvalues of A−1 are the reciprocals of those
of A. Hence the smallest eigenvalue of A is the reciprocal of the largest eigenvalue
of A−1.

Starting from a given nonzero vector q(0), such that
∥∥q(0)

∥∥ = 1, let us consider
the following iteration scheme, for k ≥ 0 :

1. Solve Az(k+1) = q(k)

2. q(k+1) ← z(k+1)

∥z(k+1)∥

3. σ(k+1) ←
[
q(k+1)

]H
Aq(k+1)

77

In the standard power method, we start with an initial guess for the eigenvector and
multiply it by the matrix in each iteration. This process is repeated until the se-
quence converges to the dominant eigenvector (the one corresponding to the largest
eigenvalue in absolute value). The corresponding eigenvalue can then be computed
using the Rayleigh quotient.

In this method instead of multiplying by the matrix A, we are solving a system
of linear equations Az(k+1) = q(k) at each step. This is equivalent to multiplying by
the inverse of the matrix, A−1, which effectively flips the spectrum of eigenvalues.
As a result, this method converges to the eigenvector corresponding to the smallest
eigenvalue of A, rather than the largest.

Inverse power method with shift

For any µ ∈ R that is not an eigenvalue of A, the eigenvectors of (A− µI)−1 are the
same as the eigenvectors of A, and the corresponding eigenvalues are

{
(λj − µ)−1

}
,

where {λj} are the eigenvalues of A. This suggests an idea. Suppose µ is close to
an eigenvalue λJ of A. Then (λJ − µ)−1 may be much larger than (λj − µ)−1 for all
j ̸= J . Thus, if we apply power iteration to (A − µI)−1, the process will converge
rapidly to qJ , this is easy to understand remembering the definition of the conver-
gence rate. This idea is called inverse iteration.

If we want to approximate the eigenvalue λ of A which is the closest to a given
number µ /∈ σ(A). We define Mµ = A− µI and observe that the eigenvalue λ of A
which is the closest to µ is the minimum eigenvalue of Mµ. Starting from a given
nonzero vector q(0), such that

∥∥q(0)
∥∥ = 1, let us consider the following iteration

scheme, for k ≥ 0 :

1. Solve Mµz
(k+1) = q(k)

2. q(k+1) ← z(k+1)

∥z(k+1)∥

3. ν(k+1) ←
[
q(k+1)

]H
Aq(k+1)

QR Factorization (A = QR)

Projectors and complementary projectors

• A projector is a square matrix P ∈ Rn×n that satisfies P = P 2.

• If w ∈ range(P), then Pw = w. Indeed, since w ∈ range(P), then w = Pz,
for some z. Therefore:

Pw = P (Pz) = P 2z = Pz = w.

• The matrix I − P is the complementary projector to P .

78 CHAPTER 7. EIGENVALUE PROBLEMS

• I − P projects on the nullspace of P : if Pw = 0, then (I − P)w = w, so
null(P) ⊆ range(I − P).

• For any w, (I − P)w = w − Pw ∈ null(P), so range (I − P) ⊆ null(P).

• Therefore:

– range(I − P) = null(P).

– null(I − P) = range(P).

Orthogonal Projectors

A projector P is orthogonal if P = P 2 = P T . We find orthonormal vectors
[q1,q2, . . . ,qn] that span the successive spaces spanned by the columns of A =
[a1,a2, . . . ,an]. This means that for full rankA, < a1,a2, . . . ,aj >=< q1,q2, . . . ,qj >
for all j = 1, . . . , n.
In matrix form, this becomes:

[a1 |a2| · · · | an] = [q1 |q2| · · · | qn]


r11 r12 . . . r1n

0 r22 . . .
...

0 0
. . . rnn


This is called the reduced QR factorization.

The Full QR Factorization

Let A be anm×nmatrix. The full QR factorization of A is the factorization A = QR,
where Q is m×m orthogonal

(
QQT = I

)
and R is m× n upper-trapezoidal.

Similarly, the reduced QR factorization of A is the factorization A = Q̂R̂, where Q̂
is m× n and R̂ is n× n upper-triangular.
Please note that in both cases, the factorization involves an orthogonal matrix and an
upper-triangular (or upper-trapezoidal) matrix. The difference lies in the dimensions
of these matrices in the full and reduced QR factorization.

Gram-Schmidt orthogonalisation

• Given a1,a2, . . . ,an (the columns of A), we find a new qj (the j-th column
of Q̂) orthogonal to q1, . . . ,qj−1 by subtracting components along previous
vectors:

wj = aj −
j−1∑
k=1

(
qT
k ak

)
qk

• We normalize to get qj =
wj

∥wj∥ .

79

• We then obtain a reduced QR factorization A = Q̂R̂, with:

rij = qT
i aj i ̸= j

rjj = ||wj ||

Please note that this method can be numerically unstable, which is why the Modified
Gram-Schmidt process is often used. Here qt

i = qH
i .

Existence and uniqueness

Theorem. Every A ∈ Cm×n(m ≥ n) has a full QR factorization, hence also a re-
duced QR factorization.

Theorem. Each A ∈ Cm×n (m ≥ n) of full rank has a unique reduced QR
factorization A = Q̂R̂ with rjj > 0.

The complete proof of these statements can be found in the Book NLA by Tre-
fethen as theorems 7.1 and 7.2.

By slightly modifying the classical Gram-Schmidt process, we can obtain a mod-
ified Gram-Schmidt process. This modified process is numerically stable and less
sensitive to rounding errors, which makes it more reliable for computations. The
algorithm for modified G-S is as follows:

for j = 1, . . . , n

wj = aj

for i = 1, . . . , j − 1

rij = qT
i aj

rij = qT
i wj

wj = wj − rijqi

rjj = ∥wj∥

qj =
wj

∥wj∥
end

end

The FLOP (Floating Point Operations) count for the MGS process is approximately
2mn2, where m is the number of rows and n is the number of columns in the matrix
being factorized. It does not distinguish between real and complex numbers, and it
does not consider memory accesses or other performance aspects.

Schur Decomposition

If A ∈ Cn×n, then there exists a unitary matrix U ∈ Cn×n such that UHAU = T ,
where T is upper triangular. The diagonal elements of T are the eigenvalues of A.

80 CHAPTER 7. EIGENVALUE PROBLEMS

The columns of U , denoted as [u1, u2, . . . , un], are called Schur vectors. They are
generally not eigenvectors.

Schur Vectors

The k-th column of UHAU = T reads as Auk = λkuk +
∑k−1

i=1 tikui. This implies
that Auk ∈ span{u1, . . . , uk} for all k. The first Schur vector is an eigenvector of A.
The first k Schur vectors form an invariant subspace for A. The Schur decomposition
is not unique.

Basic QR algorithm

Let A ∈ Cn×n. The QR algorithm computes an upper triangular matrix T and a
unitary matrix U such that A = UTUH is the Schur decomposition of A.

1. Set A(0) = A,U (0) = I

2. while(STOPPING CRITERIA)

3. A(k−1) = Q(k)R(k) (QR factorisation of A(k−1))

4. A(k) = R(k)Q(k)

5. U (k) = U (k−1)Q(k) (Update transformation matrix)

6. end for

7. ReturnT = A(k), U = U (k).

Basic QR algorithm: remarks I

1. Notice that A(k) = R(k)Q(k) =
[
Q(k)

]H
A(k−1)Q(k), and therefore A(k) and

A(k−1) are similar. Note that the matrix Q is a unitary matrix.

2. Moreover, from the above observation, we have:

A(k) =
[
Q(k)

]H
A(k−1)Q(k) =

=
[
Q(k)

]H [
Q(k−1)

]H
A(k−2)Q(k−1)Q(k) =

= . . . =

=
[
Q(k)

]H
. . .
[
Q(1)

]H
A(0)Q(1) . . . Q(k)

81

Convergence of QR method

Let A ∈ Rn×n be a matrix such that

|λ1| > |λ2| > . . . > |λn| .

Then:

lim
k→+∞

A(k) =


λ1 t12 . . . t1n
0 λ2 t23 . . .
...

...
. . .

...
0 0 . . . λn

 .
As for the convergence rate, we have:

∣∣∣a(k)i,j

∣∣∣ = O(∣∣∣∣λiλj
∣∣∣∣k
)
, for i > k.

Under the additional assumption that A is symmetric, the sequence
{
A(k)

}
tends

to a diagonal matrix. If the eigenvalues of A, although being distinct, are not well-
separated, it follows that the convergence of A(k) towards a triangular matrix can
be quite slow. With the aim of accelerating it, one can resort to the so-called shift
technique.

QR algorithm - remarks

The basic QR algorithm can be used to compute eigenvalues, but:

1. It is computationally expensive (requiring O
(
n3
)

operations per iteration).

2. It can have a very slow convergence depending on the eigenvalues of A.

There are approaches to improve the situation:

• Reduce the matrix A to a similar matrix that is upper Hessenberg. Notice
that Hessenberg structure is preserved by the QR algorithm (see later). This
reduces the cost per iteration to O

(
n2
)

operations.

• Once an eigenvalue has been computed, it is “deflated” away from the matrix.
This significantly speeds up the computation of later eigenvalues.

• Use "shifts" in the QR algorithm. The rate of convergence depends on the
separation between eigenvalues. Therefore, shifts are used to increase this sep-
aration and accelerate convergence. The shift can be used in the QR algorithm
in exactly the same way that it is used in the inverse power method.

A matrix H ∈ Cn×n is called a Hessenberg matrix if its elements below the lower
off-diagonal are zero.

hij = 0, i > j + 1.

82 CHAPTER 7. EIGENVALUE PROBLEMS

H =



∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗ ∗
0 0 0 ∗ ∗ ∗
0 0 0 0 ∗ ∗


A QR iteration on a Hessenberg matrix H costs only O

(
n2
)

flops and the resulting
matrix is again a Hessenberg matrix.

Hessenberg QR-method

To improve the QR-method we make use of an algorithm consisting of two phases:

• Phase 1. Compute a Hessenberg matrix H (and an orthogonal matrix U)
such that A = UHUH . Such a reduction can be done with a finite number of
operations.

• Phase 2. Apply the basic QR-method to the matrix H. It turns out that
when applying the basic QR-method to a Hessenberg matrix the complexity of
one step is O

(
n2
)
, instead of O

(
n3
)

of the basic version.

The Lanczos algorithm

The Lanczos algorithm can be used to efficiently find the extremal eigenvalues (max-
imum and minimum) of a symmetric matrix A of size n×n. It is based on computing
the following decomposition of A :

A = QTQT

where Q whose columns is an orthonormal basis of vectors q1, . . . ,qn and T is tri-
diagonal:

Q = [q1,q2, . . . ,qn] T =


α1 β1 0 . . . 0
β1 α2 β2 . . . 0

0
.

... 0

0
.

... βn−1

0 . . . 0 βn−1 αn



83

The decomposition always exists and is unique given that q1 has been specified. We
know that T = QTAQ which gives

αk = qT
kAqk βk = qT

k+1Aqk

The full decomposition is obtained by imposing AQ = QT :

[Aq1, Aq2, . . . , Aqn] = [α1q1 + β1q2, β1q1 + α2q2 + β2q3, . . . , . . . , βn−1qn−1 + αnqn] .

At iteration k the algorithm generates intermediate matrices Qk and Tk that satisfy
Tk = QT

kAQk

Qk =
[
q1 q2 · · · qk

]
,

Tk =



α1 β1 0 · · · 0

β1 α2
. . .

...

0
. 0

...
. βk

0 · · · 0 βk αk


Lanczos algorithm:
qq = r0;q0 = 0;β0 = 1;

for (k = 1, . . . , n)

• if (βk−1 = 0) break;

• end

• qk = rk−1/βk−1;

• αk = q⊤
k Aqk;

• rk = (A− αk)qk − βk−1qk−1;

• βk = |rk|;

end

Remark 1: q1 is set randomly.
Remark 2: The (orthonormal) vectors qk are called the Lanczos vectors.

Properties of qk and Tk

At iteration k, the k-th Lanczos vector qk is proven to maximise the I.h.s. of

max
y ̸=0

yT
(
QT

kAQk

)
y

yTy
= λ1 (Tk) ≤ λ1(A) = λ1(T)

and to simultaneously minimize the I.h.s. of

min
y ̸=0

yT
(
QT

kAQk

)
y

yTy
= λn (Tk) ≥ λn(A) = λn(T)

84 CHAPTER 7. EIGENVALUE PROBLEMS

where λ1(A) and λn(A) are the maximum and the minimum eigenvalue of A, respec-
tively. The extremal eigenvalues of Tk progressively become more similar to the ones
of A. Thus, the Lanczos algorithm can be used to compute the extremal eigenvalues
of a symmetric matrix A.

• The Lanczos algorithm only requires matrix-vector multiplications with respect
to A (matrix free, very useful if A has a sparse form).

• The algorithm is very sensitive to round-off problems. The Lanczos vectors qk

loose orthogonality.

• The Lanczos algorithm can be used to efficiently find a low-rank approximation
of A.

Chapter 8

Overdetermined linear systems

Overdetermined systems have many applications, including many fitting problems.
When the problems are linear there is a very clean and simple way to find the
optimum, if we adopt the sum-of-squares error metric.

Linear regression

If there were no experimental uncertainty, the model would fit the data exactly.
However, since there is noise, the best we can do is minimise the error. The problem
is:

min
α0,α1

m∑
i=1

e2i = min
α0,α1

m∑
i=1

(α0 + α1Ti − Li)
2

The above problem is equivalent to the following:

min ∥Aα− b∥22

with

A =


1 T1
1 T2
...

...
1 Tm

 , α =

[
α0

α1

]
, b =


L1

L2
...
Lm



Polynomial regression

Suppose the model we expect to fit our data pairs (Ti, Li) , i = 1, . . . ,m is a cubic
polynomial rather than a linear one. The hypothesis now is L(T) = α0 + α1T +
α2T

2 + α3T
3

85

86 CHAPTER 8. OVERDETERMINED LINEAR SYSTEMS

The problem now reads:

min
α0,α1,α2,α3

m∑
i=1

e2i = min
α0,α1,α2,α3

m∑
i=1

(
α0 + α1Ti + α2T

2
i + α3T

3
i − Li

)2
The above problem is equivalent to the following:

min
α
∥Aα− b∥22

with

A =


1 T1 T 2

1 T 3
1

1 T2 T 2
2 T 3

2
...

...
...

...
1 Tm T 2

m T 3
m

 , α =


α0

α1

α2

α3

 , b =


L1

L2
...
Lm


Some preliminary remarks

Given A ∈ Rm×n,m ≥ n, and b ∈ Rm find x ∈ Rn such that Ax = b.
We notice that generally the above problem has no solution (in the classical sense)
unless the right side b is an element in the range(A).
We need a "new" concept of solution. The basic approach is to look for an x that
makes Ax close to b.

Solution in the least-square sense

Given A ∈ Rm×n,m ≥ n, we say that x∗ ∈ Rn is a solution of the linear system
Ax = b in the least-squares sense if Φ (x∗) = miny∈Rn Φ(y), where:

Φ(y) = ∥Ay − b∥22.

The problem thus consists of minimising the Euclidean norm of the residual.
The solution x∗ can be found by imposing the condition that the gradient of the
function Φ(·) must be equal to zero at x∗.

87

From the definition we have:

Φ(y) = (Ay − b)T (Ay − b) = yTATAy − yTATb− bTAy + bTb =

= yTATAy − (Ay)Tb− bTAy + bTb = yTATAy − 2bTAy + bTb.

Therefore:
∇Φ(y) = 2ATAy − 2ATb

from which it follows that x∗ must be the solution of the square system.

ATAx∗ = ATb System of normal equations

Some remarks

The system of normal equations is non-singular if A has full rank and, in such a case,
the least-squares solution exists and is unique.
We notice that B = ATA is a symmetric and positive definite matrix.
Thus, in order to solve the normal equations, one could first compute the Cholesky
factorization B = RTR and then solve the two systems RTy = ATy and Rx∗ = y.

However, ATA is very badly conditioned and, due to round off errors, the com-
putation of ATA may be affected by a loss of significant digits, with a consequent
loss of positive definiteness or non-singularity of the matrix.
For a matrix A with full rank, the corresponding matrix fl

(
ATA

)
turns out to be

singular.
Example:

A =

 1 1
2−27 0
0 2−27

 , f l (AT A
)
=

[
1 1
1 1

]

The full QR Factorisation

Let A be an m × n matrix. The full QR factorisation of A is the factorisation
A = QR, where Q is an m ×m orthogonal matrix (QQT = I) and R is an m × n
upper-trapezoidal matrix.
On the other hand, the reduced QR factorisation of A is the factorisation A = Q̂R̂,
where Q̂ is an m× n matrix and R̂ is an n× n upper-triangular matrix. This form
of factorisation is often used in numerical linear algebra, as it provides a numerically
stable method for solving systems of linear equations, among other applications.

Solution in the least-square sense

Instead of considering the system of normal equations, we can use the QR factorisa-
tion. The following result holds.

Theorem: Let A ∈ Rm×n, with m ≥ n, be a full rank matrix. Then the unique

88 CHAPTER 8. OVERDETERMINED LINEAR SYSTEMS

solution in the least-square sense x∗ of Ax∗ = b is given by: x∗ = R̂−1Q̂Tb, where
R̂ ∈ Rn×n and Q̂ ∈ Rm×n are the matrices of the reduced QR factorisation of A.
Moreover, the minimum of Φ(·) is given by:

Φ (x∗) =
m∑

i=n+1

[(
QTb

)
i

]2
Solution in the least-square sense - proof

Step 1. The QR factorization of A exists and is unique since A has full rank. Thus,
there exist two matrices, Q ∈ Rm×m and R ∈ Rm×n such that A = QR, where Q is
orthogonal and R is an upper trapezoidal matrix.
Step 2. We observe that since Q is an orthogonal matrix

(
QTQ = QQT = I

)
it

preserves the Euclidean scalar product, i.e.,

∥Qz∥22 = (Qz)TQz = zTQTQz = zT z = ∥z∥22 ∀z ∈ Rm

∥∥QT z
∥∥2
2
=
(
QT z

)T
QT z = zTQQT z = zT z = ∥z∥22 ∀z ∈ Rm It follows that:

∥Ax− b∥22 =
∥∥QT (Ax− b)

∥∥2
2
=
∥∥QT (QRx− b)

∥∥2
2
=
∥∥Rx−QT b

∥∥2
2
.

Recalling that R is upper trapezoidal, we have:

∥Ax− b∥22 =
∥∥Rx−QT b

∥∥2
2
=
∥∥∥R̂x− Q̂T b

∥∥∥2
2
+

m∑
i=n+1

[(
QT b

)
i

]2
.

If A does not have full rank?

If A does not have full rank, the above solution techniques above fails. In this case
if x∗ is a solution in the least square sense, the vector x∗ + z, with z ∈ ker(A),
is a solution too. We must therefore introduce a further constraint to enforce the
uniqueness of the solution. Typically, one requires that x∗ has minimal Euclidean
norm, so that the least-squares problem can be formulated as:
Find x∗ ∈ Rn with minimal Euclidean norm such that:

∥Ax∗ − b∥22 ≤ min
x∈Rn

∥Ax− b∥22

This problem is consistent with our formulation. If A has full rank, since in this case
the solution in the least-square sense exists and is unique it necessarily must have
minimal Euclidean norm. The tool for solving this problem is the singular value
decomposition (SVD).

Singular Value Decomposition (SVD)

Any matrix can be reduced in diagonal form by a suitable pre and postmultiplication
by unitary matrices. Precisely, the following result holds.

89

Property Let A ∈ Cm×n. There exist two unitary matrices U ∈ Cm×m and
V ∈ Cn×n such that

UHAV = Σ = diag (σ1, . . . , σp) ∈ Cm×n with p = min(m,n)

and σ1 ≥ . . . ≥ σp ≥ 0. This is called Singular Value Decomposition or (SV D) of
A and the numbers σi (or σi(A)) are called singular values of A.

If A is a real-valued matrix, U and V will also be real-valued and UT must be
written instead of UH . The following characterization of the singular values holds

σi(A) =
√
λi
(
AH A

)
, i = 1, . . . , n. (8.1)

Indeed, from the SVD decomposition it follows that A = UΣVH , AH = VΣUH so
that, U and V being unitary, AH A = VΣ2 VH , that is, λi

(
AH A

)
= λi

(
Σ2
)
=

(σi(A))
2. Since AAH and AH A are hermitian matrices, the columns of U, called

the left singular vectors of A, turn out to be the eigenvectors of AAH and, therefore,
they are not uniquely defined. The same holds for the columns of V, which are the
right singular vectors of A.

Relation (8.1) implies that if A ∈ Cn×n is hermitian with eigenvalues given by
λ1, λ2, . . . , λn, then the singular values of A coincide with the modules of the eigen-
values of A. Indeed because AAH = A2, σi =

√
λ2i = |λi| for i = 1, . . . , n. As far as

the rank is concerned, if

σ1 ≥ . . . ≥ σr > σr+1 = . . . = σp = 0,

then the rank of A is r, the kernel of A is the span of the column vectors of
V, {vr+1, . . . ,vn}, and the range of A is the span of the column vectors of U, {u1, . . . ,ur}.

Definition Suppose that A ∈ Cm×n has rank equal to r and that it admits a
SVD of the type UHAV = Σ. The matrix A† = VΣ†UH is called the Moore-Penrose
pseudo-inverse matrix, being

Σ† = diag

(
1

σ1
, . . . ,

1

σr
, 0, . . . , 0

)
.

The matrix A† is also called the generalized inverse of A (see Exercise 13). Indeed, if
rank(A) = n < m, then A† =

(
AT A

)−1
AT , while if n = m = rank(A),A† = A−1.

Returning to the minimization problem

Find x∗ ∈ Rn with minimal Euclidean norm such that

∥Ax∗ − b∥22 ≤ min
x∈Rn

∥Ax− b∥22

Theorem. Let A ∈ Rm×n with SVD given by A = UΣV T . Then the unique solution
to the minimization problem is:

x∗ = A†b

90 CHAPTER 8. OVERDETERMINED LINEAR SYSTEMS

where A† is the pseudo-inverse of A.

Proof. Using the SVD of A, the problem is equivalent to finding w = V Tx such
that W has minimal Euclidean norm and:∥∥Σw − UTb

∥∥2
2
≤
∥∥Σy − UTb

∥∥2
2
, ∀y ∈ Rn.

If r is the number of nonzero singular values σi of A, then:

∥∥Σw − UTb
∥∥2
2
=

r∑
i=1

(
σiwi −

(
UTb

)
i

)2
+

p∑
i=r+1

((
UTb

)
i

)2
which is minimum if σiwi −

(
UTb

)
i
= 0 ∀i = 1, . . . , r. Moreover, it is clear that

among the vectors W of Rn having the first r components fixed, the one with minimal
Euclidean norm has the remaining n−r components equal to zero. Thus the solution
vector, satisfying both the two previously stated conditions, is w∗ = Σ†UTb, that
is:

x∗ = V Σ†UTb = A†b,

where A† is the pseudo-inverse of A.

Computing the SVD

The SVD can be computed by performing an eigenvalue computation for the normal
matrix ATA. Indeed, let U and V have column partitions.

U = [u1, . . . ,um] V = [v1, . . . ,vn]

From the relations
Avj = σjuj, ATuj = σjvj

it follows that:
ATAvj = σ2jvj

The QR factorization with column pivoting is not directly used for the eigenvalue
problem. It’s used to compute the matrix U in the Singular Value Decomposition
(SVD) once we have computed V and Σ.

1. Compute V and Σ: This is done by solving the eigenvalue problem for the
normal matrix ATA. The eigenvectors of this matrix give us the columns of V,
and the square roots of the eigenvalues give us the singular values, which are
the diagonal entries of Σ.

2. Compute U: Once we have V and Σ, we can compute U using the relation A
vj = σjuj . This gives us a set of vectors that span the column space of A, but
they are not necessarily orthonormal.

3. Apply QR factorization with column pivoting: This step is used to orthonor-
malize the columns of U. The QR factorization decomposes a matrix into a
product of an orthogonal matrix and an upper triangular matrix. When ap-
plied to our computed U, it gives us an orthogonal matrix whose columns are

91

orthonormal vectors spanning the same space as the original vectors. The col-
umn pivoting is used for numerical stability, ensuring that we avoid dividing
by small numbers.

When you have very small singular values, squaring them (as you might do when
working with the normal matrix ATA in SVD) can lead to even smaller numbers.
This can cause problems in numerical computations due to the limitations of floating-
point precision, leading to large errors or instability. A possible remedy is to proceed
in two steps.

The first step uses Householder reflections to reduce the matrix A ∈ Rm×n, for
m ≥ n, to a bidiagonal form:

A = UBV T , U ∈ Rm×m, B ∈ Rm×n, V ∈ Rn×n,

where U is orthonormal, V is orthogonal and B is bidiagonal

B =


ψ1 ϕ2

ψ2 ϕ3
.

ψn−1 ϕn
ψn

 .
This process is called bidiagonalization. The second step is the application of a fast
algorithm for computing the singular value decomposition of a bidiagonal matrix. It
follows that T = BTB is symmetric and tridiagonal.
We could then apply the (symmetric) QR algorithm directly to T.

After bidiagonalization, SVD of the bidiagonal matrix has to be performed to com-
plete the task of computing the singular value decomposition of a general matrix:

B = UBΣV
T
B .

The final singular value decomposition is then achieved by:

A = (UUB) Σ (V VB)
T .

The singular value decomposition (SVD) is an alternative to the eigenvalue decom-
position that is better for rank-defficient and ill-conditioned matrices in general.

Summary

• Computing the SVD is always numerically stable for any matrix, but is typically
more expensive than other decompositions.

• The SVD can be used to compute low-rank approximations to a matrix via the
principal component analysis (PCA) (not discussed).

• PCA has many practical applications and usually large sparse matrices appear.

	Introduction
	Iterative Methods
	Elements of Multigrid
	Algebraic Multigrid Methods
	Domain Decomposition Methods
	Direct methods for sparse linear systems
	Eigenvalue problems
	Overdetermined linear systems

