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" Notation

In these notes, I use the standard bra-ket notation for quantum mechanics. However, for scalar
operators, the "hat" Ô has been sometimes omitted to make the notation less heavy. We also
use an abuse of notation, indeed in this notes

〈
v Â

∣∣ stands for
〈

Âv
∣∣, and we will use them inter-

changeably for Hermitian operators.
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1 Lecture 1

Light is an electromagnetic wave, since we can observe the phenomenon of diffraction. Even
firing a single electron many times through a crystal, we do observe a diffraction lattice, thus
electron is both a wave and a particle. In this class, we will study non relativistic quantum Me-
chanics. Relativistic effects are negligible if the velocity of the particle is small, or in a more rigours
way if: Ek ≪ E0 = mc2. Since in the quantum mechanical world we can observe diffraction phe-
nomena, we need to build a model where the superposition principle holds. So we need a vector
field. In this vector field, quantum states are called kets, and the symbol associated to them is the
following one: |u〉. Now we will illustrate the basic mathematical properties of kets.

• α |u〉≜ |αu〉
• |u〉+ |v〉≜ |u + v〉
• 〈u|αv〉≜α〈u|v〉
• 〈u|v〉≜ 〈v |u〉∗

• 〈v |n +w〉≜ 〈v |n〉+〈v |w〉

A space satisfying all these properties is called an Hilbert Space. So Quantum States form an
Hilbert Space. The bra is an operator associating a vector in Hilbert space to a complex scalar.
The notation for the bra is the following: 〈v |. The bra space is the dual of the kets Hilbert space.

• 〈αu|≜α∗ 〈v |
• 〈u + v |≜ 〈u|+〈v |

We can define a norm: ∥u∥ =p〈u|u〉 ∈R+. The norm satisfy:

∥u + v∥ ≤ ∥u∥+∥v∥.

∥〈u|v〉∥2 ≤ 〈u|u〉 · 〈v |v〉

2 Lecture 2

Quantum states are characterised by:

• Wave particle Duality

• Lack of Determinism

• Superposition Principle

Now we introduce the concept of observables. In quantum mechanics the result of an experi-
ment is always a real number. In quantum mechanics if you make a measurement on the same
quantum state, you do not necessarily get back the same observable value. The specific quantum
states which have this properties are called pure states. For example, if I shot an electron against a
detector, not passing by a slit or crystal, I always get the measurement of the electron in the same
position. Pure states always exist for any observable and for any quantum state. The pure states
can be used to construct our Hilbert Space. They will be the basis of the Hilbert Space, since pure
states are orthogonal to each other.
If we have the following state |u〉 =α |n〉+β |v〉, where |n〉 and |v〉 are pure states, respectively with
the associated observables N and V , the observables we can get from measuring |u〉 is either N
or V , not a combination of the twos. We can determine the time evolution of the quantum states,
but not the results of the measurement. It is not a lack of information, the randomness is intrinsic
to the measurement. We will indicate with P (N ) the probability of getting the observable N from
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our measurement. For the quantum state |u〉, the following holds true: P (N ) = α2

α2+β2 .

We can restrict the study to unitary quantum states. So, assuming that α2 +β2 = 1, the previous
equation becomes even simpler: P (N ) = α2. We can multiply any quantum states by any scalar,
and we obtain the same quantum state. Even limiting ourselves to states with unitary norm, we
have still a lot of choices of quantum states. Indeed quantum states are gauge invariant: |u〉 and
e iθ |u〉 describe the same state.

Now we must rigorously define the definition of measurement. After a measurement the state
collapses to the pure state we have just observed. If I take the same measurement twice, in an
interval of time arbitrary small, we will get the same observable. The measurement reset the sys-
tem in a pure state , but anyways we cannot predict the future measurement, we just find a new
initial state.

3 Lecture 3

In this lecture we will define an algebra of observables and pure states.
|u〉 = α1 |o1〉+α2 |o2〉+ · · · +α j

∣∣o j
〉 = ∑

j∈J α j
∣∣o j

〉
. As previously mentioned we will restrict our

study to quantum states with unitary norm. The pure states o j , j ∈ J form an orthogonal basis of
our Hilbert Space. Thus the two following properties hold:

•
∥∥o j

∥∥= 1 ∀ j

•
〈

o j
∣∣ok

〉= δ j k

There is a strong analogy between the discrete and continuous case, the only difference is the
summation becoming an integral.

|u〉 =
∫
α(ξ) |o(ξ)〉dξ

P [O(x) ≤O ≤O(x +δx)] ≃ |α(x)|2δx

In the following expression, |o(x0)〉 is a pure state, thus α(x) = δ(x −x0).

|o(x0)〉 =
∫
α(x) |o(x)〉d x =

∫
δ(x −x0) |o(x)〉d x = |o(x0)〉

Representation of quantum states

[Aj] =


α1

α2
...
α j



[Bj] =


β1

β2
...
β j


For the sum of two quantum states we can write:

|u〉+ |v〉 =∑
j
α j

∣∣o j
〉+∑

j
β j

∣∣o j
〉=∑

j
(α j +β j )

∣∣o j
〉
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For the inner product:

〈v |u〉 =
〈(∑

j
β j

∣∣o j
〉)∣∣∣∣∣(∑

k
αk |ok〉

)〉
=∑

j ,k

〈
β j

∣∣o j
〉∣∣(αk |ok〉

〉=∑
j ,k
β∗

j αk
〈

o j
∣∣ok

〉=∑
j
β∗

j α j .

For the continuous case, the sum become an integral, so:

〈v |u〉 =
∫
β∗(x)α(x)d x

We can also change the basis of our Hilbert Space, to find the coefficient in two different basis:
α j =

〈
v j

∣∣u〉
and βk = 〈wk |u〉. I the next step we will derive the formula for the change of basis.

1) α j =
〈

v j
∣∣u〉

2)
∣∣v j

〉=∑
k
〈

wk
∣∣v j

〉 |wk〉.
Substituting 2) in 1), we obtain the following:

α j =
∑
k

〈
wk

∣∣v j
〉∗ 〈wk |u〉 =

∑
k

〈
v j

∣∣wk
〉〈wk |u〉 =

∑
k

〈
v j

∣∣wk
〉
βk .

4 Lecture 4

The coefficients of a quantum state in two different bases are related by the expressions α j =∑
k M j kβk , with M j k = 〈o j |vk〉 and βk = ∑

j M ′
k jα j , with M ′

k j = 〈vk |o j 〉. The matrices M and M ′

are the change of basis matrix.

If we apply the change of basis twice, back and forth, obviously M M ′ = I , M ′M = I . This con-
dition is equivalent to saying that M , M ′ are unitary matrices. A unitary matrix preserves the
inner product and the norm of a quantum state, which means that it preserves the probabilities
of measurement outcomes. Therefore, a change of basis that is represented by a unitary matrix is
a valid transformation in quantum mechanics. For the continuous case it becomes:

α(ξ) =
∫

dχ f (ξ,χ)β(χ),

where f (ξ,χ) = 〈
o(ξ)

∣∣v(χ)
〉

.

Operators

Operators are functions on Hilbert Spaces: H 7→ H . Now we will study the properties of the
projector operator. P̂o j ≜

∣∣o j
〉〈

o j
∣∣. The projector is applied to a ket: P̂o j |v〉 =

∣∣o j
〉〈

o j
∣∣v〉

.
In quantum mechanics operators are associated to observables. If

∣∣o j
〉

are pure states and O j the
associated observables, we define the operator

Ô =∑
j

O j
∣∣o j

〉〈
o j

∣∣ .

For continuous systems, the situation is similar:

Ô ≜
∫

dξÔ(ξ) |o(ξ)〉〈o(ξ)| .

Let’s prove that
〈w |Ô |v〉 = 〈

Ôw
∣∣v〉= 〈

w
∣∣Ôv

〉
by explicitly expanding the sum. We know that the operator Ô is given by:

Ô =∑
j

O j
∣∣o j

〉〈
o j

∣∣
5



Now, let’s compute the inner product 〈w |Ov〉:

〈w |Ov〉 =
〈

w

∣∣∣∣∣∑
j

O j
∣∣o j

〉〈
o j

∣∣v〉〉

Using linearity of the inner product, we can expand the sum:〈
w

∣∣Ôv
〉=∑

j
O j

〈
w

∣∣o j
〉〈

o j
∣∣v〉

Now, let’s compute the inner product
〈

Ôw
∣∣v〉

:

〈
Ôw

∣∣v〉=〈(∑
j

O j
∣∣o j

〉〈
o j

∣∣w〉∣∣∣∣∣v
〉

Again, using antilinearity of the inner product,the fact that O j ∈ R and the properties of the con-
jugate, we can expand the sum in the following way:〈

Ôw
∣∣v〉=∑

j
O∗

j

〈
o j

∣∣w〉∗ 〈
o j

∣∣v〉=∑
j

O j
〈

w
∣∣o j

〉〈
o j

∣∣v〉
.

We have just shown that:
〈w |Ô |v〉 = 〈

Ôw
∣∣v〉= 〈

w
∣∣Ôv

〉
.

Now we will uncover the relationship between the operator Ô and the ket
∣∣o j 0

〉
.

Ô
∣∣o j 0

〉=∑
j

O j
∣∣o j

〉〈
o j

∣∣o j 0
〉=O j 0

∣∣o j 0
〉

.

So pure states are the eigenstates of the operators, and the observables are the associated eigen-
vectors. For a general quantum states, instead we get:

Ô |o〉 =∑
j

O j
∣∣o j

〉〈
o j

∣∣o〉=∑
j

O jα j
∣∣o j

〉
.

Let’s introduce a new notation. 〈O〉 is the expected value of the observable.

〈O〉 =∑
j

O j P (O J ) =∑
j

O j |α j |2 =
∑

j
O j

〈
v
∣∣o j

〉〈
o j

∣∣v〉=
=∑

j
〈v |O j

∣∣o j
〉〈

o j
∣∣v〉= 〈v |∑

j
O j

∣∣o j
〉〈

o j
∣∣v〉= 〈v |Ô |v〉 .

5 Lecture 5

|u〉 =∑
j
α j

∣∣o j
〉 |u〉 =∑

k
βk |vk〉

We can represent the same kets in two different bases. In the eigenstates bases we define the
diagonal matrix associated to an operator. Let’s note that M−1

k j = M∗
j k . We can translate a vector

in the two bases with the following operations:


α1

α2
...
α j

=
[

M−1
kj

]

β1

β2
...
β j


If D̂ is the operator of Ô in its diagonal form, the following equality holds:

6



Ô =
[

Mk j

]
D̂

[
M−1

k j

]
What we have just stated is a generalization of the spectral theorem for normal matrices, using
the property that M is a unitary matrix, and thus M−1 = M †.

Now we will see the position operator, for a two dimensional system.

X̂0 =
[

x0 0
0 −x0

]

with eigenstates given by |x0〉 =
[

1
0

]
, |−x0〉 =

[
0
1

]
, with eigenvalues l1/2 =±x0

Now we will define the reflection operator R̂ =
[

0 1
1 0

]
with eigenstates:

∣∣g〉=


1p
2

1p
2

 , |u〉 =


1p
2

− 1p
2

 associated to the eigenvalues λ1 = 1,λ2 =−1.

|v〉 =α1 |x0〉+α2 |−x0〉
|v〉 =β1

∣∣g〉+β2 |u〉

Now let’s explore the relationship between the two basis:

|v〉 =α1 |x0〉+α2 |−x0〉 , |v〉 =β1
∣∣g〉+β2 |u〉

α1 = 〈x0|v〉 =β1
〈

x0
∣∣g〉+β2 〈x0|u〉

α2 = 〈−x0|v〉 =β1
〈−x0

∣∣g〉+β2 〈−x0|u〉

In matrix form, the change of basis become:[
α1

α2

]
=

[ 〈
x0

∣∣g〉 〈x0|u〉〈−x0
∣∣g〉 〈−x0|u〉

][
β1

β2

]
.

We call the newfound matrix U =
[ 〈

x0
∣∣g〉 〈x0|u〉〈−x0
∣∣g〉 〈−x0|u〉

]

X̂p =U−1 X̂xU =
[

0 x0

x0 0

]
The position operator in parity form has obviously the same eigenstates of the reflection one.
Now let’s define Ĥ , the Hamiltonian operator, which gives us the total energy of the system. R̂ is
the reflection operator:

R̂ =
[

0 1
1 0

]
Ĥ |e〉 = E |e〉

We are assuming to be working on the Ammonia molecule, which can be rotated around its axis
passing vertically through the Nitrogen.

7
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For physical reason, rotating the systems should not change its energy level, thus we impose the
following constraint:

ĤR̂ |e〉 = ER̂ |e〉 =⇒ R̂ Ĥ R̂ |e〉 = ER̂R̂ |e〉 = E |e〉 = Ĥ |e〉 .

Thus R̂ Ĥ R̂ = Ĥ . Since the operators are Hermitian, Ĥ has the following form:

Ĥ =
[

a b
b∗ c

]
If we impose the previous condition, we get that the matrix has indeed the following form:

Ĥ =
[

a b
b a

]
The eigenvalues of Ĥ are λ= a ±b. If we impose a = 0, since energy is defined up to a constant,
we get that E =±b =±∆E

2 .
Thus we get:

Ĥ =
0 ∆E

2

∆E
2 0


In the fundamental state, the energy will occupy the lowest energy state, so E = −∆E

2 , assuming
∆E > 0. The eigenstate associated with this eigenvalue is

∣∣g〉
, the parity eigenstate. The expected

value of the position is obviously 0.

〈X 〉 = 〈
g
∣∣ X̂

∣∣g〉= 0.

6 Lecture 6

Now we will find out the form of the velocity V̂ operator. The most general form of an Hermitian
operator is the following one:

V̂ =
[

a b
b∗ c

]
a,c ∈R,b ∈C.

If V̂

[
α1

α2

]
= v

[
α1

α2

]
, then:

V̂ R̂

[
α1

α2

]
=−vR̂

[
α1

α2

]
=⇒ R̂V̂ R̂

[
α1

α2

]
=−v

[
α1

α2

]
=⇒ R̂V̂ R̂ =−V̂

Solving this equations, we obtain the constraints on the operator:{
c =−a

b =−b∗

Thus b is a pure complex number. We can write the matrix V̂ in the following simplified form:

V̂ =
[

a i d
−i d −a

]
a,d ∈R

8



The eigenvalues of V̂ are: v = ±
p

a2 +d 2. For the Heisenberg uncertainty principle, d ̸= 0. If
d = 0, then V̂ and X̂ would have the same eigenstates, thus in those two states we would know
with certainty both the position and the velocity.

Qubits
Now we will introduce the notion of Qubits, which is the name for a quantum system with two
basis vectors.
We introduce the following notation for the basis vectors: |0〉 , |1〉. |v〉 = a |0〉+b |1〉, with the con-
straints that ∥a∥2 +∥b∥2 = 1.
Since quantum systems are gauge invariant, we can write:

|v〉 = z |0〉+ (x + i y) |1〉 , x, y, z ∈R.

We can rewrite the following expression:
z = cos

(
θ
2

)
x + i y = e iφsi n

(
θ
2

)
Any Hermitian matrix has the following form:

Ô =
[
δ+α γ− iβ
γ+ iβ δ−α

]
, α,β,γ,δ ∈R

We can decompose the generic operator Ô =ασ̂z +βσ̂y +γσ̂x +δÎ with the Pauli matrices.

σ̂x =
[

0 1
1 0

]
, σ̂y =

[
0 − i

i 0

]
, σ̂z =

[
1 0

0 −1

]
Each of these Pauli matrices represent a 180° rotation around the x, y, z axis of the Bloch Sphere.
Any rotation around the axis can indeed be represented as a linear combination of the identity
operator and one of the Pauli matrices.

R̂x (θ) = cos
(θ

2

)
Î − i si n

(θ
2

)
σ̂x .

The equations is analogous for the other two axis.

R̂y (θ) = cos
(θ

2

)
Î − i si n

(θ
2

)
σ̂y .

R̂z (θ) = cos
(θ

2

)
Î − i si n

(θ
2

)
σ̂z .
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Let’s close this little introduction to qubits, and review the Hamiltonian operator:

Ĥ |u〉 = E |u〉 =⇒ ĤR̂ |u〉 = ER̂ |u〉 =⇒ R̂−1ĤR̂ = ER̂−1R̂ |u〉 = E |u〉 = Ĥ |u〉 .

=⇒ R̂−1ĤR̂ = Ĥ =⇒ ĤR̂ = R̂ Ĥ .

We have just proved that Ĥ and R̂ commute.

ĤR̂ |v〉 = R̂ Ĥ |v〉 =⇒ Ĥ p |v〉 = R̂ Ĥ |v〉 ,

where p is the parity, such that: p |u〉 = R̂ |u〉 .

Theorem
Two Hermitian operators commute if and only if they have a common eigenbasis.

I will prove it with the hypothesis that all the eigenvectors are non degenerates. This theorem
also holds true when without this hypothesis, but it is more complicated to prove. The more
complete version of the proof is available at this link.

=⇒ Starting from A
∣∣v j

〉=λv j , we have:

AB
∣∣v j

〉= B A
∣∣v j

〉= Bλ
∣∣v j

〉=λB
∣∣v j

〉
Thus

∣∣v j
〉

and B
∣∣v J

〉
are both eigenvectors of A, sharing the same λ. Since A is Hermitian, and

thus diagonalizable, its eigenvectors are distinct, the eigenspaces are one dimensional, then B |v〉
must be a multiple of |v〉. In other words |v〉 is an eigenvector of B as well as A.

⇐= Since A and B have a common eigenbasis identified by |v〉 j ∈ J

Â
∣∣v j

〉=α j |v〉
B̂

∣∣v j
〉=β j |v〉

ÂB̂ |u〉 =∑
j
α j ÂB̂

∣∣v j
〉=∑

j
α j Âb j

∣∣v j
〉=∑

j
α j b j Â

∣∣v j
〉=∑

j
α j b j a j

∣∣v j
〉

.

B̂ Â |u〉 =∑
j
α j B̂ Â

∣∣v j
〉=∑

j
α j B̂ a j

∣∣v j
〉=∑

j
α j a j B̂

∣∣v j
〉=∑

j
α j a j b j

∣∣v j
〉 ■

7 Lecture 7

If ÂB̂ ̸= B̂ Â =⇒ ÂB̂ − B̂ Â ̸= 0. We define the commutator operator:[
Â, B̂

]= ÂB̂ − B̂ Â.

We define the also variance of an operator:

σ2 ≜
∑

j

(
O j −〈o〉)2P

(
O j

)= 〈v |(Ô −〈o〉)2|v〉 = 〈v |Ô2 |v〉+〈o〉2 −2〈o〉〈v |Ô |v〉 =

= 〈v |Ô2 |v〉+〈o〉2 −2〈o〉2 = 〈v |Ô2 |v〉−〈o〉2 = 〈v |Ô2 −〈o〉2 |v〉 .

We have used the notation that 〈o〉 = 〈v |Ô |v〉.
Moreover, let’s verify that he first two definitions are equivalent, since:

σ2 =∑
j

(
O j −〈o〉

)2
P (O j ) =∑

j

(
O2

j −2O j 〈o〉+〈o〉2)P (O j ) =

10
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=∑
j

O2
j P (O j )−〈o〉2 = 〈v |Ô2 |v〉−〈o〉2 = 〈v |Ô2 −〈o〉2 |v〉 .

Now we will define the following operator:

Â′ = Â−〈A〉.
On Hilbert Spaces the Cauchy-Schwartz Inequality holds:

∥〈u|w〉∥2 ≤ 〈u|u〉〈w |w〉 .

For the operators Â, B̂ , exploiting the Hermitian property, in the same way as the formula for the

computation of the variance
(
Var(X ) = E[(X −E(X ))2] = E(X 2)− [E(X )]2

)
, we can write:

σ2
A = 〈v | Â2 −〈A〉2 |v〉 = 〈v | Â′2 |v〉 = 〈

v Â′∣∣Â′v
〉

σ2
B = 〈v | B̂ 2 −〈B〉2 |v〉 = 〈v | B̂ ′2 |v〉 = 〈

vB̂ ′∣∣B̂ ′v
〉

We can now apply the CS Inequality, with |u〉 = Â′ |v〉 and |w〉 = B̂ ′ |v〉 .

σ2
Aσ

2
B ≥ ∥∥〈

v Â′∣∣B̂ ′v
〉∥∥2

≜
∥∥〈v | Â′B̂ ′ |v〉∥∥2 ≥ Im

(〈v | Â′B̂ ′ |v〉)2=
= 1

4

∥∥〈v | Â′B̂ ′ |v〉−〈v | Â′B̂ ′ |v〉∗∥∥2 = 1

4

∥∥∥〈v | Â′B̂ ′ |v〉−〈v | B̂ ′† Â′† |v〉
∥∥∥2 =

= 1

4

∥∥〈v | Â′B̂ ′ |v〉−〈v | B̂ ′ Â′ |v〉∥∥2 = 1

4

∥∥〈v | Â′B̂ ′− B̂ ′ Â′ |v〉∥∥2 = 1

4

∥∥〈v | [Â′, B̂ ′] |v〉∥∥2

=⇒ σ2
Aσ

2
B ≥ 1

4

∥∥[Â′, B̂ ′]
∥∥2 = 1

4

∥∥〈v | [Â′, B̂ ′] |v〉∥∥2

=⇒ σ2
Aσ

2
B ≥ 1

4

∥∥[Â′, B̂ ′]
∥∥2

.

Applying this formula to the Position and Hamiltonian Operator and the ket |v〉 =
[

1p
2
− ip

2

]
we

get:

σxσE ≥ 1

2

∥∥〈v | [X̂ ′, Ĥ ′] |v〉∥∥= 1

2
xo∆E

σ2
x = 〈v | X̂ 2 −〈x〉 |v〉 = 〈v | X̂ 2 |v〉−〈x〉2 = x2

0

σ2
E = 〈v | Ĥ 2 −〈E〉2 |v〉 = 〈v | Ĥ 2 |v〉−〈E〉2 = ∆E 2

4

Composites Systems In a composite system, there are new degrees of freedom. For example
the position of the two Hydrogen atoms in the H2-TPP.
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Hx 7→ ∣∣u(x)〉 , H y 7→
∣∣u(y)〉

∣∣u(x)u(y)〉≜ (∣∣u(x)〉)(∣∣u(y)〉)
∈Hx ⊗H y .

The Tensor product of Hilbert Spaces is still an Hilbert Space.(∣∣u(x) + v (x)〉)(∣∣u(y) + v (y)〉)
≜

∣∣u(x)u(y)〉+ ∣∣v (x)v (y)〉+ ∣∣u(x)v (y)〉+ ∣∣v (x)u(y)〉 .

〈
v (x)v (y)∣∣u(x)u(y)〉≜ 〈

v (x)∣∣u(x)〉〈
v (y)∣∣u(y)〉 .

If:
Ô(x) ∣∣u(x)〉= ∣∣w (x)〉 =⇒ Ô(x) ∣∣u(x)v (y)〉= ∣∣w (x)v (y)〉 .

Let’s introduce more definitions and equality:

Ô(x)Ô(y) ∣∣u(x)u(y)〉≜ ∣∣w (x)w (y)〉≜ Ô(y)Ô(x)

∣∣u(x)〉=∑
j
α(x)

j

∣∣∣o(x)
j

〉
∣∣u(y)〉=∑

k
β(u)

k

∣∣∣o(u)
j

〉
∣∣u(x)u(y)〉=∑

j k
α(x)

j β
(y)
k

∣∣∣o(x)
j o(y)

k

〉

8 Lecture 8

Energy of the H2-TPP. Four degrees of freedom.

|x〉 7→
[
α1

α2

]
,
∣∣y

〉 7→ [
β1

β2

]

=⇒ ∣∣x y
〉 7→ {[

α1

α2

]
x

,

[
β1

β2

]
y

}
To find the eigenstates, we impose the condition that:[

0 ∆E
2

∆E
2 0

]
x

·
{[
α1

α2

]
x

,

[
β1

β2

]
y

}
+

[
0 ∆E

2
∆E
2 0

]
y

·
{[
α1

α2

]
x

,

[
β1

β2

]
y

}
=

= ∆E

2

{[
α2

α1

]
,

[
β1

β2

]}
+∆E

2

{[
α1

α2

]
,

[
β2

β1

]}
= (

1
)

Assuming that ∆E
2

[
α2

α1

]
= c

[
α1

α2

]
and ∆E

2

[
β2

β1

]
= c ′

[
β1

β2

]
:

=⇒ c =±∆E

2
, c ′ =±∆E

2
.

(
1
)=±∆E

2

{[
α1

α2

]
,

[
β1

β2

]}
±∆E

2

{[
α1

α2

]
,

[
β1

β2

]}
= E

{[
α1

α2

]
,

[
β1

β2

]}
=⇒ E =±∆E

2
± ∆E

2
.
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We have just solved the eigenvalue problem. The eigenvectors are:

|v〉 =
{[ 1p

2
± 1p

2

]
,

[ 1p
2

± 1p
2

]}
Let’s consider a basis:

∣∣x0, y0
〉

,
∣∣x0,−y0

〉
,
∣∣−x0, y0

〉
,
∣∣−x0,−y0

〉
.

{[
α1

α2

]
,

[
β1

β2

]}
7→


α1β1

α1β2

α2β1

α2β2


The vector we got is still a normalized vector.

Ĥ


α1β1

α1β2

α2β1

α2β2

= ∆E

2


α2β1

α2β2

α1β1

α1β2

+ ∆E

2


α1β2

α1β1

α2β2

α2β1

= ∆E

2


α2β1 +α1β2

α2β2 +α1β1

α1β1 +α2β2

α1β2 +α2β1



=⇒ Ĥ = ∆E

2


0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0


This system is analogous to two non interacting qubits. If we want to introduce an interaction,

let’s study the H2 molecule. We assume to have the following basis:
∣∣∣x(1)

0 , x(2)
0

〉
,
∣∣∣−x(1)

0 , x(2)
0

〉
,
∣∣∣x(1)

0 ,−x(2)
0

〉
,
∣∣∣−x(1)

0 −x(2)
0

〉
.

Let’s calculate the expected value of the energy of the first and last element of the basis:〈
x(1)

0 , x(2)
0

∣∣∣ Ĥ
∣∣∣x(1)

0 , x(2)
0

〉
= Ĥ11〈

−x(1)
0 ,−x(2)

0

∣∣∣ Ĥ
∣∣∣−x(1)

0 ,−x(2)
0

〉
= Ĥ44.

Since having two electrons on the same atoms costs more energy, our model doesn’t consider the
interaction between the electrons. In order to have a more realistic model we need a different
Hamiltonian:

Ĥ =


α 1 1 0
1 0 0 1
1 0 0 1
0 1 1 α


We get a two degrees of freedom model, with models not decoupled from each other, in order to
have a more realistic model. That’s the same situation of two interacting qubits.

Continuous Systems

|u〉 =
∫
ψ(ξ′)

∣∣ξ′〉dξ′

〈ξ|u〉 =
∫
ψ(ξ′)

〈
ξ
∣∣ξ′〉dξ′ =

∫
ψ(ξ′)δ(ξ−ξ′)dξ′ =ψ(ξ).

The most natural coordinates to use is position. ψ(x) is called the wave function and |ψ(x)|2
represents the probability density function.

P (x0 ≤ x ≤ x0 +d x) ≃ |ψ(x0)|2

Now we introduce again the position operator:

〈x〉 =
∫
ψ∗(X̂ψ)

13



〈x〉 =
∫

x|ψ(x)|2d x =
∫
ψ(x)∗xψ(x)d x.

Thus: X̂ = x. In the 3d space instead we get: ˆ⃗r = r⃗ = xu⃗x + yu⃗y + zu⃗z . Now we introduce another
operator, not related to an observable. The state translation operator.

T̂R⃗ψ(⃗r ) =ψ(⃗r − R⃗).

T̂R⃗1
T̂R⃗2

= T̂R⃗2
T̂R⃗1

= T̂R⃗1+R⃗2

Let’s find the eigenstates. We can write:

T̂R⃗ψ(⃗r ) =ψ(⃗r − R⃗) =αR⃗ψ(⃗r ) =⇒ |αR⃗ |2 = 1.

T̂R⃗1
ψ(⃗r ) =αR⃗1

ψ(⃗r )

T̂R⃗2
ψ(⃗r ) =αR⃗2

ψ(⃗r )

T̂R⃗1+R⃗2
ψ(⃗r ) =αR⃗1+R⃗2

ψ(⃗r )

T̂R⃗1+R⃗2
ψ(x) = T̂R⃗1

T̂R⃗2
ψ(⃗r ) =αR⃗1

αR⃗2
ψ(⃗r ) =⇒ αR⃗1

αR⃗2
=αR⃗1+R⃗2

ψ(⃗r ) =⇒ αR⃗ = e−i k⃗·R⃗

The associated wave function is:

ψ(⃗r ) = 1p
v

e i k⃗ ·⃗r

9 Lecture 9∫
∞

∣∣ψ(⃗r )
∣∣dr⃗ =

∫
∞

∣∣ψ(⃗r − R⃗)
∣∣2dr⃗ =

∫
∞

∣∣α(⃗r )
∣∣2∣∣ψ(⃗r )

∣∣2d⃗(r ) =⇒ ∣∣α(R⃗)
∣∣2= 1.

This result combined with the fact that: α(R⃗) = e−i k⃗·R⃗ implies that kx ,ky ,kz ∈R. Now:

T̂R⃗ψ(⃗(r )) =α(R⃗)ψ(⃗r ) = e−i k⃗·R⃗ψ(⃗r ) =ψ(⃗r − R⃗) =⇒ ψ(⃗r ) =ψ(⃗r − R⃗)e i k⃗·R⃗

Now let’s introduce a new function:

φ(⃗r ) = e−i k⃗ ·⃗rψ(⃗r ) = e−i k⃗·(⃗r−R⃗)ψ(⃗r − R⃗) =φ(⃗r − R⃗) ∀R⃗.

=⇒ φ(⃗r ) = c =⇒ ψ(⃗r ) = ce i k⃗ ·⃗r∫ ∣∣∣c∣∣2dr⃗ = 1 =⇒ c = 1p
V

.

We can interpret the shift by R⃗ as a change of coordinate, which leaves velocity unchanged.

r⃗ ′ = r⃗ − R⃗ =⇒ dr⃗ ′

d t
= dr⃗

d t
− dR⃗

d t
= dr⃗

d t
−0 =⇒ v ′ = v.

ˆ⃗Vψ(⃗r ) = v⃗ψ(⃗r )

V̂ T̂R⃗ψ(⃗r ) = v⃗ T̂R⃗ψ(⃗r ) = T̂R⃗ v⃗ψ(⃗r ) = T̂R⃗V̂ψ(⃗r ) =⇒ V̂ T̂R⃗ = T̂R⃗V̂ ∀R⃗

For velocity and momentum we can write:

V̂ ce i k⃗ ·⃗r = cv⃗e i k⃗ ·⃗r

14



For a combined system of two non interacting particles, r⃗1, r⃗2, we get a wave function which is
the product of the single wave functions. We will ignore the normalization factor, assuming thus
that our laboratory has volume v = 1 :

ψ(r⃗1, r⃗2) = e i (k⃗1·r⃗1+k⃗2·r⃗2)

We impose that the total momentum of two particles, is the sum of the momentum of the isolated
particles:

p⃗1 = p⃗ (⃗k1) , p⃗2 = p⃗ (⃗k2) , p⃗T OT = p⃗ (⃗k1 + k⃗2) =⇒ p⃗ (⃗k1 + k⃗2) = p⃗ (⃗k1)+ p⃗ (⃗k2).

That implies that: p⃗ ∝ k⃗, in particular p⃗ = ×k⃗ And applying a translation in a combined system
we get:

T̂Rψ(r⃗1, r⃗2) = e i (k⃗1·r⃗1−k⃗1·R⃗+k⃗2·r⃗2−k⃗2·R⃗) = e−i (k⃗1+k⃗2)·R⃗ e i (k⃗1·r⃗1+k⃗2·r⃗2).

T̂Rψ(r⃗1) = e−k⃗1·R⃗ e i k⃗1 r⃗1 .

T̂Rψ(r⃗2) = e−k⃗2R⃗ e i k⃗2·r⃗2 .

P̂e i k⃗ r⃗ =×k⃗e i k⃗ ·⃗r =−i×∇
ˆ⃗V = −i×

m
∇

ˆ⃗P is hermitian, since all the components are Hermitian. Now let’s prove it for the x component.
Statement: 〈

ϕ
∣∣ p̂x

∣∣ψ〉= 〈
ϕ

∣∣p̂xψ
〉= 〈

ϕp̂
∣∣ψ〉= 〈

p̂ϕ
∣∣ψ〉

.

Proof: ∫ +∞

−∞
ϕ∗p̂xψd x =−i×

∫ +∞

−∞
ϕ∗ ∂

∂x
ψd x =

[
−i×ϕ∗ψ

]+∞
−∞+i×

∫ +∞

−∞
∂ϕ∗

∂x
ψd x =

= 0+
∫ +∞

−∞
i×∂ϕ

∗

∂x
ψd x =

∫ +∞

−∞
(
p̂xϕ

)∗
ψd x =

The first definite integral is zero, because we are talking about density functions, its absolute
value integrated over the entire space must be finite, so the function goes to zero at infinity. In the
last step, it was used the fact that the product of the complex conjugate is the complex conjugate
of the product.

The Heisenberg Uncertainty Principle

σxσpx ≥ 1

2

∣∣〈ϕ∣∣ [X̂ , P̂x ]
∣∣ϕ〉∣∣= 1

2

∣∣∣〈ϕ∣∣ x̂ p̂x − p̂x x̂
∣∣ϕ〉∣∣∣= 1

2

∣∣∣∫ ϕ∗(x̂ p̂x − p̂x x̂)ϕd x
∣∣∣=

= 1

2

∣∣∣−i×
∫ [

ϕ∗x
∂ϕ

∂x
−ϕ∗ ∂(xϕ)

∂x

]
d x

∣∣∣= ×
2

∣∣∣∫ {
ϕ∗x

∂ϕ

∂x
−ϕ∗

[
x
(∂ϕ
∂x

+ϕ
)]}

d x
∣∣∣=

= ×
2

∣∣∣∣∫ ϕ∗ϕd x

∣∣∣∣= ×
2

=⇒ σxσpx ≥ ×
2

.
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Continuous Systems in Momentum Representation
Let’s remember that here |⃗r 〉 ,

∣∣p⃗〉
are respectively position and momentum eigenstates.

ψ(⃗r )≜ 〈⃗r |u〉

Ψ(p⃗)≜
〈

p⃗
∣∣u〉

|u〉 =
∫
ψ(⃗r ) |⃗r 〉dr⃗

Ψ(p⃗) =
∫
ψ(⃗r )

〈
p⃗

∣∣⃗r 〉
dr⃗ =

∫
ψ(⃗r )

〈⃗
r
∣∣p⃗〉∗ dr⃗ =

∫
ψ(⃗r )

[ 1p
v

e i p⃗
× ·⃗r

]∗
dr⃗ = 1p

v

∫
ψ(⃗r )e−i p⃗

× ·⃗r dr⃗ =

= 1p
v

∫
ψ(⃗r )e−i p⃗ ·⃗r

× dr⃗

〈 ˆ⃗p〉 =
∫ ∣∣∣Ψ(p⃗)

∣∣∣2
p⃗d p⃗ =

∫
Ψ∗(p⃗)p⃗Ψ(p⃗)d p⃗ = 〈

Ψ(p⃗)
∣∣ ˆ⃗p

∣∣Ψ(p⃗)
〉

〈 ˆ⃗r 〉 =
∫ ∣∣∣ψ(⃗r )

∣∣∣2
r⃗ d r⃗ =

∫
ψ∗ (⃗r )⃗rψ(⃗r )dr⃗ =

∫
ψ∗ (⃗r )ϕ(⃗r )dr⃗ =

∫
Ψ∗(p⃗)Φ(p⃗)d p⃗ =⋆

We call ψ(⃗r ) = r⃗ψ(⃗r ) Where in the last step we have used the Parseval theorem. We can now use
the fact that:

Φ(p⃗) = 1p
v

∫
e−i p⃗

× ·⃗rψ(⃗r )dr⃗ = i×∇p

∫
1p
v

e−i p⃗
× ·⃗rψ(⃗r )dr⃗ = i×∇pΨ(p⃗).

⋆=
∫
Ψ∗(p⃗)

(
i×∇p⃗

)
Ψ(p⃗)d p⃗ =

∫
Ψ∗(p⃗) ˆ⃗rΨ(p⃗)d p⃗

=⇒ ˆ⃗r = i×∇p

Energy (No Magnetic Fields)

H(p⃗, r⃗ ) = K (p⃗)+V (⃗r ) = p2

2m
+V (⃗r ) = −×2∇2

2m
+V (⃗r )

Now we will try to find the energy eigenvalues:

Hψ(⃗r ) = Eψ(⃗r )

=⇒ −×2

2m
∇2ψ(⃗r )+V (⃗r )ψ(⃗r ) = Eψ(⃗r )

This is the time independent Schrödinger Equation.

Free Particle
For a free particle, the potential is constant, thus it can be arbitrarily set to zero: V (⃗r ) = 0

−×2

2m
∇2ψ(⃗r ) = Eψ(⃗r ).

The following wave function is a solution to the equation.

ψ(⃗r ) = 1p
v

e i k⃗ r⃗ .

16



In particular ψ(⃗r ) is the eigenfunction associated with the eigenvalue E = ×2k2

2m We don’t need to
explicitly calculate it, since the energy and momentum operator commute.

Particle in a Square Box

ψ(⃗r ) = 0, outside the box. For symmetry reasons, we can factor the wave function: ψ(⃗r ) = X (x)Y (y)Z (z).:

− ×2

2m

[ ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

]
X (x)Y (y)Z (z) = E X (x)Y (y)Z (z)

We can assume that inside the box the potential is null.

−×2

2m

[
Y (y)Z (z)

d 2X (x)

d x2 +X (x)Z (z)
d 2Y (y)

d y2 +X (x)Y (y)
d 2Z (z)

d z2

]
= E X (x)Y (y)Z (z)

−×2

2m

[
1

X (x)

d 2X (x)

d x2 + 1

Y (y)

d 2Y (y)

d y2 + 1

Z (z)

d 2Z (z)

d z2

]
= E

We can split this equation, on the three coordinates:

×2

2m

d 2X (x)

d x2 +Ex X (x) = 0

×2

2m

d 2Y (y)

d y2 +Ey Y (y) = 0

×2

2m

d 2Z (z)

d z2 +Ez Z (z) = 0

E = Ex +Ey +Ez

The general solution, imposing the boundaries condition that ψ(x) =ψ(L) = 0 for the x case is:

X (x) = Asi n(kx)

where k = π
L n ,n ∈N. With this solution we get the following eigenvalue:

=⇒ Ex = ×2k2

2m
= π2×2

2L2m
n2

x = h2

8L2m

The total energy is thus:

E = h2

8L2m
(n2

x +n2
y +n2

z ), nx ,ny ,nz ∈N
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Particle in a Quantum Well

Finite Quantum Well Derivation

A finite quantum well, also known as a finite square well, is a concept in quantum mechanics
where a particle is confined within a "box" with finite potential "walls". The potential function is
defined as:

V (x) =
{
−V0, |x| ≤ L

0, |x| > L

where V0 is the depth of the well, and L is the width of the well.
Wave Function and Schrödinger Equation

To find the wave function and energy eigenvalues, we need to solve the time-independent Schrödinger
equation (TISE):

− ħ2

2m

d 2ψ(x)

d x2 +V (x)ψ(x) = Eψ(x)

The TISE can be divided into three regions: 1. Region I (x <−L): V (x) = 0 2. Region II (−L ≤ x ≤ L):
V (x) =−V0 3. Region III (x > L): V (x) = 0 For regions I and III, the TISE becomes:

− ħ2

2m

d 2ψ(x)

d x2 = Eψ(x)

The general solution for regions I and III is:

ψI (x) = Aek1x +Be−k1x , ψI I I (x) = Fek1x +Ge−k1x

where k1 =
√

2mE
ħ2 . For region II, the TISE becomes:

− ħ2

2m

d 2ψ(x)

d x2 −V0ψ(x) = Eψ(x)

The general solution for region II is:

ψI I (x) =C cos(k2x)+D sin(k2x)

where k2 =
√

2m(E+V0)
ħ2 .

Boundary Conditions and Matching Solutions

The wave function and its first derivative must be continuous at the boundaries x =±L . There-
fore, we have the following boundary conditions:

• ψI (−L) =ψI I (−L)

• ψI I (L) =ψI I I (L)

• ψ′
I (−L) =ψ′

I I (−L)

• ψ′
I I (L) =ψ′

I I I (L)

Applying these boundary conditions and exploiting the symmetry of the problem, we can reduce
the number of unknown coefficients and obtain transcendental equations for the allowed ener-
gies. For even parity solutions, we have:

α tan(α) = k2

For odd parity solutions, we have:
αcot(α) =−k2

where α= k1L.
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11 Lecture 11

Quantum Tunneling

Supplementary Material Link
The wave-function solution has the the following form:

ψ(x) =


Ae i kx +Be−i kx , x < 0

Ce−κx +Deκx , 0 ≤ x ≤ a

t (A)Ae i kx , x > a

Substituting this solution in the Schrödinger equation, for the first two cases(x ≤ a) we get that:

k =
p

2m(Ex −V0)

×

κ=
p

2m(V0 −E)

×
We get that:

p(x < , v > 0)∝ |A|2

p(x < , v < 0)∝ |B |2

p(x > a, v > 0)∝ |t (A)|2|A|2

|t |2 = p(x < , v > 0)

p(x > , v > 0)

We will make some assumptions, which will make the discussion easier. Let’s assume that D is
negligible, the probability that the particle is reflected at the second barrier is considered null.
Thus we can assume that D = 0. Now as a boundary condition we impose the continuity of the
wave function: {

ψ(0+) =ψ(0−) =⇒ A+B =C

ψ(a+) =ψ(a−) =⇒ Ce−κa = t Ae i ka

=⇒ (A+B)e−κa = t Ae i ka =⇒ t = A+B

A
e(−κa+i ka)

=⇒ |t |2 = |A+B |2
|A|2 e−(κa+i ka) ·e−(κa−i ka) = |A+B |2

|A|2 e−2κa =βe−2κa
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|t |2 =βe−2a
p

2m(V0−E)
×

This last value is just the tunneling probability.
Ammonia Molecule {

m1
d 2x1
d t 2 = F (x1 −x2)

m2
d 2x1
d t 2 =−F (x1 −x2)

=⇒
{

d 2x1
d t 2 = F (x1−x2)

m1
d 2x2
d t 2 =−F (x1−x2)

m2

d 2(x1 −x2)

d t 2 = F

m1
(x1 −x2)+ F

m2
(x1 −x2)

δ= x1 −x2

d 2δ

d t 2 =
( 1

m1
+ 1

m2

)
F (δ)

mR
d 2δ

d t 2 = F (δ).

We define mr = m1m2
m1+m2

the reduced mass.

12 Lecture 12

Ĥ = 1

2

[ p̂x

m
+kx2

]
= 1

2

[−×2

m

∂2

∂x2 +kx2
]

Let’s assume that:

ψ= Ae−
x2

σ2

Ĥψ(x) = Eψ(x)

We get:
1

2

[−×2

m

(
Ae−

x2

σ2
(2x

σ2

)2
− 2

σ2 Ae
−x2

σ2

)
+kx2 Ae−

x2

σ2

]
= E Ae−

x2

σ2

The term ψ= Ae−
x2

σ2 can be simplified, obtaining a constant on the right term.

1

2

[−×2

m

((2x

σ2

)2
− 2

σ2

)
+kx2

]
= E

By imposing the following two conditions that the coefficients of the x2 terms are zero and x = 0,
so the the equation always hold ∀x, we get:

1. x = 0 =⇒ ×2

σ2m
= E

2. Sum of the coefficients of x2 equal to zero, =⇒ −×2

m

(
2
σ2

)2

+kx2 = 0 =⇒ σ2 = 2×p
mk

By "substituting" 2. into 1., we obtain:

E = 1

2
×
√

k

m
= 1

2
×ω

Ĥ = 1

2

[−×2

m

d

d x2 +kx2
]
= 1

2

[−×2

m

d

d x2 +mω2x2
]
= 1

2

[
p̂2

x

m
+mω2x2

]
=

= 1

2

[
π̂2 +ω2q2

]
= 1

2
(−i π̂+ωq)(i π̂+ωq).
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π= p̂xp
m

, q =p
mx

â† ≜
(−i π̂+ωq

) 1p
2×ω

= 1p
2

(√mω

× x̂ + i
1p

m×ω
p̂

)
= 1p

2

(√mω

× x + ×p
m×ω

∂

∂x

)

â ≜
(
i π̂+ωq

) 1p
2×ω

= 1p
2

(√mω

× x̂ − i
1p

m×ω
p̂

)
= 1p

2

(√mω

× x − ×p
m×ω

∂

∂x

)
π̂= p̂xp

m
=− i×p

m

d

d x

Ĥ = 1

2

[
π̂2 +ω2q2

]

â† · âψ= â†(i π̂+ωq)p
2×ω

ψ= â†(i π̂ψ+ωqψ)p
2×ω

= â†

p
2×ω

( ×p
m

dψ

d x
+ωqψ

)
=

= 1

2×ω
[ −×p

m

d

d x

( ×p
m

dψ

d x
+ωqψ

)
+ωq

×p
m

dψ

d x
+ω2q2ψ

]
= 1

×ω Ĥ − 1

2
ψ

â† = 1p
2×ω

(−i π̂+ωq) = 1p
2×ω

(
−× d

d x
+mωx

)
â = 1p

2×ω
(i π̂+ωq) = 1p

2×ω
(
× d

d x
+mωx

)
Ĥ = 1

2
×ω[

â†â + ââ†]
Ĥ =×ω[

â†â + 1

2

]
Ĥ =×ω[

ââ† − 1

2

]
Note that â and â† are not Hermitian Operator. One is the adjoint operator of the other. However
their product is Hermitian.

0 =×ω
(
â†â + 1

2
− â†â + 1

2

)
[â, â†] = ââ† − â†â = 1

Ĥ â† =×ω
(
â†ââ† + 1

2
â†

)
â†Ĥ =×ω

(
â†â†â + 1

2
â†

)
When we subtract these two equations:

[Ĥ , â†] =×ωâ†[â†, â] =×ωâ†

Equivalently:
[Ĥ , â] =−×ωâ

Let’s talk about different energy levels:

Ĥ |n〉 = En |n〉

Ĥ â† =×ωâ† + â†Ĥ
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Ĥ â† |n〉 = ×ωâ† |n〉+ â†Ĥ |n〉 = ×ωâ† |n〉+En â† |n〉
Ĥ(â† |n〉) = (×ω+En)(â† |n〉)
Ĥ |n +1〉 = (×ω+En) |n +1〉

En+1 =×ω+En

E0 = 1
2×ω

}
=⇒ En =×ω

(
n + 1

2

)
Similarly, for â, you can demonstrate that:

Ĥ
(
â |n〉)= (En −×ω)(â |n〉) = (En −×ω) |n −1〉

This notation is called occupancy number representation.
Now, we can express the position and momentum operators in terms of the raising and lowering
operators:

x̂ =
√

ħ
2mω

(â + â†)

p̂ = i

√
mħω

2
(â† − â)

13 Lecture 13

Assume that we are working with unitary kets, thus 〈n|n〉 = 1.

Ĥ â† |n〉 = (En +×ω)â† |n〉 = (En +×ω)c |n +1〉

Ĥ â |n〉 = (En −×ω)â |n〉 = (En −×ω)c ′ |n −1〉

c2 = c2 〈n +1|n +1〉 =
(
〈n|(â†)†

)(
â† |n〉

)
= 〈n| ââ† |n〉 =⋆

Now, remembering that:

Ĥ =×ω
(
ââ† − 1

2

)
=⇒ 1

×ω Ĥ + 1

2
= ââ†

⋆= 〈n| 1

×ω Ĥ |n〉+ 1

2
〈n|n〉 = 1

×ω 〈n| Ĥ |n〉+ 1

2
= 1

×ωEn + 1

2
= 1

×ω×ω
(
n + 1

2

)
+1

2
= n +1.

As a convention for c we choose a positive number. There is no physical reason why it cannot be
the opposite.

=⇒ c =+pn +1

Reasoning in the same way, remembering that Ĥ =×ω
(
â† + 1

2

)
:

c ′2 = c ′2 〈n|n〉 = (〈n| â†)(â |n〉)= 〈n| Ĥ

×ω − 1

2
|n〉 = n + 1

2
− 1

2
= n.

V = 1

2
kx2

â† ≜
1p

2×ω
(−i π̂+ωq)≜

1p
2×ω

( ip
m

p̂x +
p

mωx
)= 1p

2×mω

(
i p̂x +mωx

)
â = 1p

2×mω

(−i p̂x +mωx
)

=⇒ â + â† = 2p
2×mω

(mωx) =
√

2mω

× x =⇒ x =
√

×
2mω

(â† + â)
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〈V 〉 = 〈n|V |n〉 = 〈n| 1

2
kx2 |n〉 = 1

2
k

×
2mω

〈n| (â†+â)(â†+â) |n〉 = 1

2
k

×
2mω

〈n| â†â†+â†â+ââ†+ââ |n〉 =⋆
The first and last term between the bra and the ket generate |n +2〉 and |n −2〉, which are orthog-
onal to |n〉, thus:

⋆= 1

2
k

×
2mω

〈n| â†â + ââ† |n〉 =⋆⋆
Remembering that:

Ĥ = ×ω
2

(â†â + ââ†) =⇒ â†â + ââ† = 2Ĥ

×ω

⋆⋆= 1

2
k 〈n| 2Ĥ

×ω |n〉 ×
2mω

= k

2mω2
〈n| Ĥ |n〉 = mω2

2mω2
〈n| Ĥ |n〉 = 1

2
〈En〉 = 1

2
En

〈K 〉 = ET OT −〈V 〉 = 1

2
En

Equipartition of energy theorem for harmonic Oscillator.

â†(â |n〉) = â†pn |n −1〉 =p
nâ† |n −1〉 =p

n
p

n |n〉 = n |n〉
Thus we call â†â = n̂, the occupation number operator.

Harmonic Oscillator CO2

We will describe at first the system from a classical point of view. Notation:xc , x1, x2 indicate the
position of the carbon atom, and the 1st and 2nd oxygen atom respectively.

Fx = F (xc −x1) = Fx (δ)

Fx
∼= Fx (δ0)+ dFx (δ0)

dδ
(δ−δ0) = 0−k(δ−δ0)

Here δ0 identifies the equilibrium distance, thus the force F (δ0) = 0. We can write:

mo
d 2x1

d t 2 =−k(x1 −xc )

mo
d 2x2

d t 2 =−k(x2 −xc )

mc
d 2xc

d t 2 =−k(xc −x1)−k(xc −x2)

=⇒ d 2

d t 2 (mo x1 +m0x2 +mc xc ) = d xC M

d x2 = 0

From the first two equations:

mo
d 2x1

d t 2 −mo
d 2x2

d t 2 =−k(x1 −xc )+k(x2 −xc )

=⇒ m0
d 2

d t 2 (x1 −x2) =−k(x1 −x2)

mo
d 2

d t 2 Aoo =−k Aoo

d 2

d t 2 Aoo + k

mo
A00 = 0 =⇒ ωγ =

√
k

m0

This is the first oscillating mode. There is another one. From the 3r d equation we get:

mc
d 2xc

d t 2 =−k(2xc −x1 −x2)
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=⇒ d 2x1

d t 2 + d 2x2

d t 2 −2
d 2xc

d t 2 =− k

mo
(x1 −xc )− k

mo
(x2 −xc )+2

k

mc
(2xc −x1 −x2)

d 2

d t 2 (x1 +x2 −2xc ) =− k

mo
(x1 +x2 −2xc )+ 2k

mc
(2xc −x1 −x2)

d 2

d t 2 (x1 +x2 −2xc ) =−
( k

mo
+ 2k

mc

)
(x1 +x2 −2xc )

d 2

d t 2 (x1 +x2 −2xc )+
( k

mo
+ 2k

mc

)(
x1 +x2 −2xc

)
= 0 =⇒ ωu =

√
k(mc +2mo)

momc
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From now on we will consider time evolution, so we will introduce the time variable. Let’s intro-
duce the time translation operator, with the following properties:

t̂τ |u(t )〉 = |u(t +τ)〉

t̂τ(|u(t )〉+ |v(t )〉) = |u(t +τ)〉+ |v(t +τ)〉
t̂τ(α |u(t )〉) =α |u(t +τ)〉

t̂τ1 t̂τ2 |u(t )〉 = t̂τ1 |u(t +τ2)〉 = |u(t +τ1 +τ2)〉 = t̂τ2 t̂τ1 |u(t )〉
t̂τ1

∣∣ψ(t )
〉=βτ1

∣∣ψ(t )
〉= ∣∣ψ(t +τ1)

〉
t̂τ2

∣∣ψ(t )
〉=βτ2

∣∣ψ(t )
〉= ∣∣ψ(t +τ2)

〉
βτ1βτ2

∣∣ψ(t )
〉= t̂τ1 t̂τ2

∣∣ψ(t )
〉= t̂τ1+τ2

∣∣ψ(t )
〉=βτ1+τ2

∣∣ψ(t )
〉

=⇒ βτ1+τ2 =β(τ1 +τ2) =βτ1βτ2 =β(τ1)β(τ2) =⇒ β(t ) = e−iωt ,ω ∈R
The condition of ω belonging to the reals, is due to the fact that it must hold the following:
|β(t )|2 = 1. ∣∣ψ(t )

〉= t̂τ
∣∣ψ(t = 0)

〉=β(t )
∣∣ψ(t = 0)

〉= e−iωt ∣∣ψ(t = 0)
〉

Let’s remember that, the conservation of energy imposes:

Ĥ
∣∣ψ(t = 0)

〉= E
∣∣ψ(t = 0)

〉 =⇒ Ĥ t̂τ2

∣∣ψ(t = 0)
〉= E t̂τ2

∣∣ψ(t = 0)
〉

Ĥ
∣∣ψ(t = 0)

〉= E
∣∣ψ(t = 0)

〉
Ĥ t̂τ2

∣∣ψ(t = 0)
〉= E t̂τ2

∣∣ψ(t = 0)
〉

The second equation can be rewritten as:

t̂−1
τ2

Ĥ t̂τ2

∣∣ψ(t = 0)
〉= E

∣∣ψ(t = 0)
〉

Comparing the first and the rewritten second equation, we can see that:

t̂−1
τ2

Ĥ t̂τ2 = Ĥ

Multiplying both sides by t̂τ2 , we get:
Ĥ t̂τ2 = t̂τ2 Ĥ

So we have proved that the time translation operator and the Hamiltonian operator commute,
thus they share the same set of eigenfunctions. So there is a one-to-one correspondence of the
eigenfunctions, thus ω= f (E) must be a function of the energy.
Let’s assume to have two non interacting particles, so there is no energy associated with the in-
teraction. The total energy is the sum of the energies of the single particles.∣∣ψT OT

〉= ∣∣ψ1(t )
〉∣∣ψ2(t )

〉= ∣∣ψ1(t = 0)
〉

e−iω1t ∣∣ψ2(t = 0)
〉

e−iω2t = ∣∣ψ1(t = 0)
〉∣∣ψ2(t = 0)

〉
e−i (ω1+ω2)t
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=⇒ f (E1 +E2) =ω1 +ω2 = f (E1)+ f (E2) =⇒ ω∝ E

Photons
Photons have no mass, so E =

√
c2p2 +m2c4 =

√
c2p2 = cp

e i (kx−ωt ), c = ω

k
, p =×k =⇒ p = ×ω

c
,E =×ω

Ĥ
∣∣ψ(t = 0)

〉= E
∣∣ψ(t = 0)

〉 =⇒ ∣∣ψ(t )
〉= e−i E

× t ∣∣ψ(t = 0)
〉

Remember that we are assuming that ψ is an eigenfunction of the Hamiltonian operator. For a
generic quantum state, the following holds true:

|u(t )〉 =∑
j
α j e−i

E j
× t ∣∣ψ j (t = 0)

〉
|u(t = 0)〉 =∑

j
α j

∣∣ψ j (t = 0)
〉

H
∣∣ψ j (t = 0)

〉= E j
∣∣ψ j (t = 0)

〉

Ĥ =
[

0 −∆E
2

−∆E
2 0

][
α1

α2

]
= E

[
α1

α2

]
=⇒ E =±∆E

2

1p
2

[
1
1

]
= ∣∣g〉

,
1p
2

[
1
−1

]
= |u〉

|u(t = 0)〉 =α ∣∣g〉+β |u〉
|α|2 +|β|2 = 1

|u(t )〉 =αe i ∆E
2× t ∣∣g〉+βe−i ∆E

2× t |u〉

〈x〉 = 〈u(t )| x̂ |u(t )〉 = |u(t )〉T
[

x0 0
0 −x0

]
|u(t )〉 = 2x0αβ

(
e i ∆Et

2×
)
= 2x0αβcos

(∆E

× t
)

If we assume that α,β ∈R =⇒ a =α∗,β=β∗.
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Let E ′
j = E j +E0.

|u(t )〉 =∑
j
α j e−i

E j
× t ∣∣ψ j

〉
|u(t )〉 =∑

j
α j e−i

E ′
j −E0

× t ∣∣ψ j
〉

|u(t )〉 =
(∑

j
α j e−i

E ′
j
× t ∣∣ψJ

〉)
e i

E0
× t = ∣∣u′(t )

〉
e i

E0
× t

Obviously |u(t )〉 and
∣∣u′(t )

〉
represent the same quantum state, so E0 can be chosen arbitrarily.

Dynamics of a free particle

Ĥ = −×2

2m
∇2

In one dimension:

Ĥψx = Eψ(x) =⇒ −×2

2m

d 2ψ(x)

d x
−Eψ(x) = 0
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The solution is ψ(x) = e i kx , and if we introduce time dependence we get: ψ(x, t ) = e i (kx−ωt ) with:
×k = p,×ω= E .

2 4 6 8 10

−1

−0.5

0.5

1

x

y

Real and Imaginary Parts of e i (kx−ωt )

Real part: cos(kx −ωt )
Imaginary part: sin(kx −ωt )

Let’s apply a change of coordinate, with the observer moving at the same speed of the wave:

x ′ = x − v t

This value: e i (kx ′+kv t−ωt ) is constant when kv =ω =⇒ v = ω
k .

×k = p

×ω= E = p2

2m
= pv

2
=⇒ v = 2E

p
= 2

×ω
×k

= 2ω

k
̸= ω

k

So there is a paradox, because we obtain two different velocities. Let’s switch to momentum

representation, and remembering that ω= p2

2m× .

Ψ(p, t ) =Ψ(p)e−iω(p)t

〈X̂ 〉 = 〈
Ψ(p, t )

∣∣ X̂
∣∣Ψ(p, t )

〉
X̂Ψ(p, t ) = i× d

d p

[
Ψ(p)e−iω(p)t

]
= i×

[
e−iω(p)t dΨ(p)

d p
+Ψ(p)

(
−i t

dω(p)

d p

)
e−iω(p)t

]

〈
Ψ(p, t )

∣∣ X̂
∣∣Ψ(p, t )

〉= i×e iω(p)t
〈
Ψ(p)

∣∣∣∣dΨ(p)

d p
+Ψ(p)

(
−i t

dω(p)

d p

)〉
e−iω(p)t =

i×
〈
Ψ(p)

∣∣∣∣dΨ(p)

d p

〉
+×t

〈
Ψ(p)

∣∣ dω(p)

d p

∣∣Ψ(p)
〉= 〈

Ψ(p)
∣∣ i× d

d p

∣∣Ψ(p)
〉+×t

〈
Ψ(p)

∣∣ p

m×
∣∣Ψ(p)

〉=
〈X̂ 〉t=0 + t

m

〈
Ψ(p)

∣∣p
∣∣Ψ(p)

〉= 〈X̂ 〉t=0 + t

m
〈p̂〉 = 〈x(t = 0)〉+〈v̂〉t

We define v̂ =×dω(p)
d p = dω

dk = "group velocity" ̸= ω
k = "phase velocity"
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In free space, a particle become more dispersed.

Ψ(p, t ) = e−iω(p)t

|u(t )〉 =∑
j
α j e−i

E j
× t ∣∣ψ( j )

〉
Ĥ

∣∣ψ j
〉= E j

∣∣ψ j
〉

u(t +∆t ) =∑
j
α j e−i

E j
× (t+∆t ) ∣∣ψ j

〉

=⇒ |u(t +∆t )〉− |u(t )〉
∆t

=∑
j
α j e

−i E j t

×
e

−i E j ∆t

× −1

∆t

∣∣ψ j
〉

For t −→ 0:

∂ |u(t )〉
∂t

=− i

×
∑

j
α j e

−i E j t

× E j
∣∣ψ j

〉 =⇒ ∂ |u(t )〉
∂t

=− i

× Ĥ
∑

j
α j e

−i E j t

×
∣∣ψ j

〉
We finally get the time dependent Schrodinger Equation:

∂ |u(t )〉
∂t

= −i

× Ĥ |u(t )〉 =⇒ Ĥ |u(t )〉 = ×i
∂ |u(t )〉
∂t

If we can factor: |u(t )〉 = u(x, t ) =ψ(x)T (t ), and Ĥ doesn’t depend on time, so Ĥ only acts on ψ

we get:

Ĥψ(x)T (t ) = i× ∂

∂t

[
u(x, t )

]=⇒ T (t )Ĥψ(x) = i×ψ(x)
∂

∂t
T (t ) =⇒ Ĥ = i× 1

T (t )

dT (t )

d t
= E

The left term doesn’t depend on time, the right one doesn’t depend on position, so they must be
constant, so E = c. We obtain again the time independent Shrodinger Equation.

Ĥψ(x) = Eψ(x)

i×dT (t )

d t
= ET (t )

T (t )∝ e−
E
× t
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Ehrenfest Theorem

d

d t
〈Ô〉 = d

d t
〈u|Ô |u〉 =

〈
∂u

∂t

∣∣∣∣Ô |u〉+〈u| ∂Ô

∂t
|u〉+〈u|Ô

∣∣∣∣ ∂∂t
u

〉
From the time dependent Shrodinger equation we have that: ∂u

∂t = 1
i× Ĥ |u〉 Thus, substituting and

using the complex conjugate when switching from a ket to a bra:

d

d t
〈Ô〉 =

〈
− 1

i× Ĥu

∣∣∣∣Ô |u〉+
〈∂Ô

∂t

〉
+〈u|Ô

∣∣∣∣ 1

i× Ĥu

〉
=− 1

i×
〈

Ĥu
∣∣Ô |u〉+

〈∂Ô

∂t

〉
+ 1

i× 〈u|Ô ∣∣Ĥu
〉

We can now exploit the Hermeticity of the operator, and we get:

d

d t
〈Ô〉 =− 1

i× 〈u| ĤÔ |u〉+
〈∂Ô

∂t

〉
+ 1

i× 〈u|ÔĤ |u〉 = 1

i× 〈u|ÔĤ − ĤÔ |u〉+
〈∂Ô

∂t

〉
=⇒ d

d t
〈Ô〉 = 1

i× 〈u| [Ô, Ĥ ] |u〉+
〈∂Ô

∂t

〉
For the position operator the last term is null, since position operator doesn’t depend on time:

d x

d t
= 1

i× 〈u| [x, Ĥ ] |u〉

Let’s remember that: [x, Ĥ ] = [x, K̂ + V̂ ] = [x, K̂ ]+ [x,V̂ ] = [x, K̂ ], since the potential operator de-
pends only on the position of the particle. As both terms in the commutator involve multiplica-
tion by the same function of position, they are equal, and the commutator is zero.

[
x, K̂

]
ψ(x) = −×2

2m

[
x

d 2ψ(x)

d x2 − d 2

d x2 xψ(x)
]
= −×2

2m

[
x

d 2ψ(x)

d x2 − d

d x

(
ψ(x)+x

d

d x
ψ(x)

)]
=

−×2

2m

[
x

d 2ψ(x)

d x2 − dψ(x)

d x
− dψ(x)

d x
−x

d 2ψ(x)

d x2

]
= ×2

m

dψ(x)

d x
= i

×
m

[
−i× d

d x

]
ψ(x) = i×

m
p̂xψ(x)

d

d t
〈x̂〉 = 1

i× 〈u| [x, Ĥ ] |u〉 = 1

i× 〈u| i×
m

p̂x |u〉 = 〈u| p̂x

m
|u〉 = 〈u| v̂x |u〉 = 〈vx〉

[p̂x ,V ]ψ(x) = p̂xV (x)ψ(x)−V (x)p̂xψ(x) =−i×
{ d

d x
[V (x)ψ(x)]−V (x)

dψ(x)

d x

}
=

=−i×
{
ψ(x)

dV (x)

d x
+V (x)

dψ(x)

d x
−V (x)

dψ(x)

d x

}
=−i×ψ(x)

dV (x)

d x
= i×Fxψ(x)

=⇒ [p̂x , Ĥ ] = i×Fx

[p̂x , Ĥ ] = [p̂x , K̂ + V̂ ] = [p̂x , K̂ ]+ [p̂x ,V̂ ] =
[

p̂x ,
p̂2

x

2m

]
+[p̂x ,V̂ ] = 0+ [p̂x ,V̂ ]

d〈p̂x〉
d t

= 1

i× 〈u| [p̂x , Ĥ ] |u〉+
〈d p̂x

d t

〉
= 1

i× 〈u| [p̂x , Ĥ ] |u〉+0

d〈p̂x〉
d x

= 1

i× 〈u| i×F̂x |u〉 = 〈F̂x〉

This result can be obtained for every axis:

m
d〈v⃗〉

d t
= 〈F⃗ 〉
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For velocity we obtain an analogous result:

d 〈⃗r 〉
d t

= 〈v⃗〉

Dynamics

Let’s remember that: |u(t )〉 =∑
j α j e

−i E j t

×
∣∣ψ j

〉
, where Ĥ

∣∣ψ〉
j = E j

∣∣ψ j
〉

.

e Â = 1+ Â+ Â2

2
+ Â3

3!
+ ...

Thus:

e−i
E j
× t ∣∣ψ j

〉= (
1− i

E j

× t +
(−i E j t

×
)2 1

2
+·· ·

)∣∣ψ j
〉=

=
(
1− i

Ĥ t

× +
(
−i

Ĥ t

×
)2 1

2
+

(
−i

Ĥ t

×
)3 1

6
+·· ·

)∣∣ψ j
〉= e−i Ĥ

× t ∣∣ψ( j )
〉

So we can write:

|u(t )〉 =∑
j
α j e

−i E j t

×
∣∣ψ j

〉=∑
j
α j e−

i Ĥ t
×

∣∣ψ j
〉= e−

i Ĥ t
×

∑
j
α j

∣∣ψ j
〉= e−

i Ĥ t
× |u(t = 0)〉

Now we will use this fact:

〈u(t )|u(t )〉 = ||u(t )||2 =
〈

u(t = 0)e
−i Ĥ t
×

∣∣∣e −i Ĥ t
× u(t = 0)

〉
=

=
〈

u(t = 0)
∣∣∣e i Ĥ t

× e
−i Ĥ t
× u(t = 0)

〉
= ||u(t = 0)||2.

We have been working so far in the so called the Schrodinger Picture.
The Schrödinger and Heisenberg pictures are two different formulations of quantum mechanics.
They differ in how they deal with the time evolution of a system.
In the Schrödinger picture, the state vectors (or wave functions) evolve in time, while the opera-
tors (observables and others) are mostly constant with respect to time.
On the other hand, in the Heisenberg picture, the state vectors are time-independent, while the
operators incorporate a dependency on time.

ÔH = e
i Ĥ t
× Ôs e−

i Ĥ t
×

〈ÔH (t )〉 = 〈u|ÔH |u〉 = 〈u|e i Ĥ t
× Ôs e−

i Ĥ t
× |u〉 =

〈
e−

i Ĥ t
× u

∣∣∣Ôs

∣∣∣e− i Ĥ t
× u

〉
= 〈u(t )|Ôs |u(t )〉

It is possible to derive that:
dÔH

d t
= 1

i×
[
ÔH , Ĥ

]+∂Ôs

∂t

Angular Momentum
We will work in cylindrical coordinates. So:

x = ρcosθ

y = ρ sinθ

z = z

−i× ∂

∂θ
=−i×

(∂x

∂θ

∂

∂x
+ ∂y

∂θ

∂

∂y

)
=−i×

(
−y

∂

∂x
+x

∂

∂y

)
=−y p̂x +xp̂y = L̂z
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17 Lecture 17

L̂x ≜ y p̂z − zp̂y =−i× ∂

∂φx

L̂y ≜ zp̂x −xp̂z =−i× ∂

∂φy

L̂z ≜ xp̂y − y p̂x =−i× ∂

∂φz

Since these operators are coupled, they don’t commute. It can be verified that:

[L̂x , L̂y ] = i×L̂z

[L̂y , L̂z ] = i×L̂x

[L̂z , L̂x ] = i×L̂y

Due to the uncertainty principle, we can’t measure more than one component at the same time.
Now we will solve the eigenequation:

L̂zϕ(ρ,θ,φ) = Lzϕ(ρ,θ,φ)

−i× ∂

∂φ
ϕ(ρ,θ,φ) = Lzϕ(ρ,θ,φ), ϕ(ρ,θ,φ) =ψ(ρ,θ)ξ(φ)

=⇒ −i× d

dφ
ξ(φ) = Lzξ(φ) =⇒ ξ(φ) = ce i mφ

=⇒ Lz =×m

We impose that: e i mΦ = e i m(φ+2π), m = 0 ∈ Z. In reality, the condition must be imposed on the
squared value of the wave-function, so it should be e i mΦ = e i m(φ+4π), m = 0,± 1

2 ,±1,± 3
2 ,±2,± 3

2 , · · ·
For the non integers m, there is an ambiguity on the wave function, which becomes a two-valued
function. For the time being, we will restrict our analysis to the previous conditions, with only
integer coefficients.

L̂z |m〉 = ×m |m〉
Definition: L̂± ≜ L̂x ± i L̂y

L̂z L̂± |m〉 = L̂z (L̂x ± i L̂y ) |m〉
From the commutation relations:

[L̂y , L̂z ] = i×L̂x =⇒ L̂z L̂y =−i×L̂x + L̂y L̂z

[L̂z , L̂x ] = i×L̂y =⇒ L̂z L̂x = i×L̂y + L̂x L̂z

L̂z L̂± |m〉 = L̂z (L̂x ± i L̂y ) |m〉 = i×L̂y |m〉+ L̂x L̂z |m〉± i (−i×L̂x |m〉+ L̂y L̂z |m〉)
= i×L̂y |m〉+ L̂x (×m) |m〉± i (−i×L̂x |m〉+×mL̂y |m〉) =×(i L̂y +mL̂x ± L̂x ±mi L̂y ) |m〉 =

=×[(m ±1)L̂x ± i (m ±1)L̂y ] |m〉 = ×(m ±1)(L̂± |m〉) =×(m ±1) · c |m ±1〉

Let’s define another operator:
L̂2 = L̂2

z + L̂2
y + L̂2

z

The following commutation relations hold:

[L̂2, L̂x ] = [L̂2, L̂y ] = [L̂2, L̂z ] = 0 =⇒ [L̂2, L̂+] = [L̂2, L̂−] = 0

The operators share eigenvectors, thus, if: L̂z |m〉 = ×m |m〉

=⇒ L̂2 |m〉 = ×2λ(m) |m〉 =⇒ 〈m| L̂2 |m〉 = ×2λ(m)
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=⇒ 〈m| L̂2
z + L̂2

y + L̂2
x |m〉 = 〈m| L̂2

z |m〉+〈m| L̂2
y |m〉+〈m| L̂2

x |m〉 = ×2m2 +〈L2
y 〉+〈L2

x〉
From the previous expressions it is possible to conclude that:

×2λ(m)−×2m2 = 〈L̂2
y 〉+〈L̂2

x〉 ≥ 0 =⇒ λ(m)−m2 ≥ 0 =⇒ |m| ≤
√
λ(m)

The total angular momentum operator L̂2 can be expressed in terms of the individual angular
momentum components L̂x , L̂y , L̂z as follows:

L̂2 = L̂2
x + L̂2

y + L̂2
z

The raising and lowering operators L̂+ and L̂− are defined as:

L̂+ = L̂x + i L̂y

L̂− = L̂x − i L̂y

Now, we can express the total angular momentum operator in terms of the raising and lowering
operators. First, let’s find the product of the raising and lowering operators:

L̂+L̂− = (L̂x + i L̂y )(L̂x − i L̂y ) = L̂2
x + L̂2

y − i (L̂x L̂y − L̂y L̂x )

L̂−L̂+ = (L̂x − i L̂y )(L̂x + i L̂y ) = L̂2
x + L̂2

y + i (L̂x L̂y − L̂y L̂x )

Adding these two equations, we get:

L̂+L̂−+ L̂−L̂+ = 2(L̂2
x + L̂2

y )

Now, we can express the total angular momentum operator in terms of the raising and lowering
operators:

L̂2 = L̂2
z +

1

2
(L̂+L̂−+ L̂−L̂+)

This equation shows the relationship between the total angular momentum operator and the
raising and lowering operators.

Now we will derive this relation: [L̂+, L̂−] = 2×L̂z .
Firstly, let’s recall the definitions of the raising and lowering operators:

L̂+ = L̂x + i L̂y

L̂− = L̂x − i L̂y

Now, let’s compute the commutator:

[L̂+, L̂−] = L̂+L̂−− L̂−L̂+

Substitute the definitions of the raising and lowering operators:

[L̂+, L̂−] = (L̂x + i L̂y )(L̂x − i L̂y )− (L̂x − i L̂y )(L̂x + i L̂y )

Expand the product:

[L̂+, L̂−] = L̂2
x − i L̂x L̂y + i L̂y L̂x + L̂2

y − (L̂2
x + i L̂x L̂y − i L̂y L̂x + L̂2

y )

Simplify the expression:

[L̂+, L̂−] = 2i (L̂y L̂x − L̂x L̂y )

Now, recall the commutation relation for angular momentum components:
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[L̂x , L̂y ] = i×L̂z

Rearranging this equation, we get:

L̂y L̂x − L̂x L̂y =−i×L̂z

Substitute this result back into the commutator expression:

[L̂+, L̂−] = 2i (−i×L̂z )

Finally, simplify the expression:

[L̂+, L̂−] = 2×L̂z

Thus, we have derived the commutator

[L̂+, L̂−] = 2×L̂z

From the previous results we get:

L̂2 = L̂z + 1

2

(
L̂+L̂−− L̂−L̂++ L̂−L̂++ L̂−L̂+

)
= L̂z + 1

2
(2×L̂z + L̂−L̂+L̂−L̂+) = L̂2

z +×L̂z + L̂−L̂+

We introduce the following notation:

L̂2 |λ(m),m〉 = ×2λ(m) |λ(m),m〉

L̂z |λ(m),m〉 = ×m |λ(m),m〉
The ket notation |λ(m),m〉 represents an eigenstate both of the L̂2 and L̂z operators, since the two
operators commute, this is a correct notation, because the two operators have the same eigen-
states, and there is a bijective function λ between their eigenvalues. Here, λ(m) is the eigenvalue
of the total angular momentum operator L̂2, and m is the eigenvalue of the z-component of the
angular momentum operator L̂z .
Let’s introduce l = mM AX and:

L̂2 |λ(l ), l〉 = ×2λ(l ) |λ(l ), l〉
L̂z |λ(l ), l〉 = ×l |λ(l ), l〉

L̂2 |λ(l ), l〉 = L̂2
z |λ(l ), l〉+×L̂z |λ(l ), l〉+ L̂−L̂+ |λ(l ), l〉 = (×2l 2 +×2l +0) |λ(l ), l〉

The last term is 0, since Ø l +1 because l = mM AX and "higher states" do not exist.

L̂2 |λ(l ), l〉 = ×2l (l +1) |λ(l ), l〉

Since the the ladder operators commute with the total angular momentum operator L̂2, the lad-
der operators do not change the eigenvalue of the total angular momentum operator when acting
on an eigenstate. Let’s prove it:

L̂2(L̂− |λ(l ), l〉)= L̂−
(
L̂2 |λ(l ), l〉)= L̂−

(×2l (l +1) |λ(l ), l〉))= c×2l (l +1) |λ(l −1), l −1〉 =⋆

L̂2(L̂− |λ(l ), l〉)= L̂2(c |λ(l −1), l −1〉)= cL̂2(|λ(l −1), l −1〉)=⋆= c×2l (l +1) |λ(l −1), l −1〉
Here, c is a constant that comes from the action of the lowering operator on the eigenstate, which
can be simplified.
This procedure can be iterated for all the possible values of m, and we have shown that the eigen-
value related to the total angular momentum is a equal to ×2l (l +1) for every m = l , l −1, l −2, . . .
, thus λ(m) =λ= l (l +1).

Resume
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L̂2and L̂z commute, so they share the same eigenstates, which can be classified with two inte-
gers numbers, assuming the form |l ,m〉, with |m| ≤ l , where:

L̂z |l ,m〉 = ×m |l ,m〉

L̂2 |l ,m〉 = ×2l (l +1) |l ,m〉
|l ,m〉 =ϕ(ρ,θ,φ) =α(ρ)Y m

l (θ,φ) =α(ρ)P m
l (cosθ)e i mφ)

This is the use of Spherical coordinates and Legendre Polynomials

18 Lecture 18

L̂± |l ,m〉 = c±(l ,m) |l ,m〉
From now on we will leave implicit the dependence of the constant c on l and m.

〈l ,m| L̂∓L̂± |l ,m〉 = |c±|2 〈l ,m|l ,m〉

L̂∓L̂± = L̂2 − L̂2
z ∓×L̂z

L̂2 = L̂2
z + L̂2

y + L̂2
x

〈l ,m| L̂2 − L̂2
z ∓×L̂z |l ,m〉 = 〈l ,m|×2l (l +1)−×2m2 ∓×2m |l ,m〉 = ×2[l (l +1)−m(m ±1)] = |c±|2

=⇒ c± =×pl (l +1)−m(m ±1)

Magnetic Orbital Dipole Moment

ˆ⃗µL = µ ˆ⃗L
× , where µ= q×

2m is the Bohr Magneton.

ĤB = g j
ˆ⃗µL ·Bu⃗z =−g J

µL̂z B

× = g j
q×

2m×BL̂z = g j
qB

m
L̂z

Here g j is the Landé factor, which is equal to 2 for electrons.
Rotational Energy

We first analyze a perfectly symmetrical ammonium molecule [N H4]+.

KR = 1

2

L2

I

ĤR = 1

2

L̂2

I

So we obtain the following eigen-equation:

1

2

L̂2

I
ψ= Erψ =⇒ Er = 1

2I
×2l (l +1)

Now we analyze the Ammonia molecule N H3. In this case we have not a scalar, but a tensor of
inertia, which is a diagonal 3x3 matrix, if we use the principles axis of inertia as our system of
reference.
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In this case we get:

ĤR = 1

2

[
L̂2

x

Ix
+

L̂2
y

Iy
+ L̂2

z

Iz

]
= 1

2

[ L̂2
x + L̂2

y + L̂2
z

Ix y
− L̂2

z

Ix y
+ L̂2

z

Iz

]
= 1

2

[
L̂2

Ix y
+ L̂2

z

(
1

Iz
− 1

Ix y

)]

ĤR |l ,m〉 = ER (l ,m) |l ,m〉 = ER (l ,m) |l ,m〉 = 1

2

[×2l (l +1)

Ix y
+×2m2

( 1

Iz
− 1

Ix y

)]
|l ,m〉

In the case of the CO2, we have a linear molecule.

ĤR = 1
2

L̂2
x+L̂2

y

Ix y
ER (l ,m) = 1

2×2 l (l+1)
Ix y
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Stern-Gerlach Experiment

L̂z =−i× ∂

∂θz
ψ(θz ) = Lzψ(θz ) =⇒ Lz =×m, ψ(θz ) = ce i mθz

We impose that:
ψ(θz ) = ce i mθz = ce i m(θz+4π)

For 2π= 0π, the wave-function assumes two different values, so we must deal with a two-valued
function. So we will work in a tensor product space:

Hr ⊗H s

We assume the

[
1
0

]
and

[
0
1

]
to be our basis vectors for the spin Hilbert space H s . We define the

operator Ŝz . We impose, following the results from the Stern-Gerlach experiment, that :

Ŝz

[
1
0

]
= ×

2

[
1
0

]

Ŝz

[
0
1

]
=−×

2

[
0
1

]
Thus:

Ŝz = ×
2

[
1 0
0 1

]
Let’s remember that l = mM AX = 1

2 and we get:

Ŝ2
[
α

β

]
=×2 1

2

(1

2
+1

)[α
β

]
=×2 3

4

[
α

β

]
We can also define the Ŝ+ operator:

Ŝ+
∣∣∣∣sz = ×

2

〉
= 0

Ŝ+
∣∣∣∣sz =−×

2

〉
= c+

∣∣∣∣sz =−×
2

〉
=×

√
l (l +1)−m(m +1) =×

∣∣∣∣sz = ×
2

〉
Where m =− 1

2 and l = 1
2 .
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19 Lecture 19

We impose the following conditions:

Ŝ+
[

1
0

]
= 0⃗, Ŝ+

[
0
1

]
= c+

[
1
0

]
=×

[
1
0

]
From the first condition it follows that:

Ŝ+
[

1
0

]
=

[
α β

γ δ

][
1
0

]
=

[
0
0

]
=⇒ α= 0,γ= 0

From the second condition it follows that:

Ŝ+
[

0
1

]
=

[
0 β

0 δ

][
0
1

]
=×

[
1
0

]
=⇒ β=×,δ= 0.

Thus we get that;

Ŝ+ =×
[

0 1
0 0

]
In the same way, we obtain that:

Ŝ− =×
[

0 0
1 0

]
We can now write the following system of equations:{

Ŝ+ = Ŝx + i Ŝy

Ŝ− = Ŝx − i Ŝy
=⇒

{
Ŝx = 1

2 (Ŝ++ Ŝ−)

Ŝy =− i
2 (Ŝ+− Ŝ−)

We obtain the following two matrices:

Ŝx = ħ
2

(
0 1
1 0

)
= 1

2
×σ̂x

Ŝy = ħ
2

(
0 −i
i 0

)
= 1

2
×σ̂y

ˆ⃗S v⃗ = vx Ŝx + vy Ŝy + vz Ŝz

Now let’s evaluate the following commutators:

[Ŝx , Ŝy ] = Ŝx Ŝy − Ŝy Ŝx = i×Ŝz

Similarly, we get:
[Ŝy , Ŝz ] = i×Ŝx

[Ŝz , Ŝx ] = i×Ŝy

We get results analogous to the ones that we obtain for the commutators for the L̂x/y/z operators.
For Fermions it holds stat:

Ŝ2 = ˆ⃗S ˆ⃗S∗ =
(1

2
×
)2(|σ2

x |+ |σy |2 +|σz |2
)= 3

4
×2 Î

With s = 1
2 , we can write: Ŝ2 =×2s(s+1)Î . All the Fermions have spin s = 1

2 . Instead all the Bosons
have spin s = 1, save from the Higg’s Boson which have spin s = 0. For a two atoms system, in the
tensor product space, we can choose as a basis the following kets:

|x0,↑〉 , |x0,↓〉 , |−x0,↑〉 , |−x0,↓〉
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ˆ⃗J = ˆ⃗L+ ˆ⃗S

ŜT OT = Ŝ1 + Ŝ2

Theorem: Addition of Angular Momentum
If we have a composite systems, expressed by the two kets the allowed values of the total angu-
lar momentum quantum number jT OT , given two angular momenta corresponding to quantum
numbers j1 and j2, are jT OT = j1 + j2, j1 + j2 −1, · · · | j1 − j2| and for each of these values of j ,m
takes on the (2 j +1) values m = j , j −1, ...,− j . The proof of this theorem is beyond the scope of
this course.

Let’s fix the following quantities, for s =± 1
2 :

ŜT OT |e1,e2〉 = ×2ST OT (ST OT +1) |e1,e2〉

0 ≤ ST OT ≤ 1

There is a relation between ˆ⃗µ and ˆ⃗S that can be expressed through the Bohr Magneton:

ˆ⃗µ= gµB

×
ˆ⃗S

ĤB = ˆ⃗µB⃗

For the electron ge = 2. We also get that:

B⃗ ′ = V⃗ × E⃗

c

Ĥ ′ = Ĥ = ˆ⃗µs B⃗ ′ = ˆ⃗µs
V⃗ × E⃗

c

For a particle with spin 1, the spin matrices are the following ones:

Sx = ×p
2

0 1 0
1 0 1
0 1 0



Sy = ×p
2

0 −i 0
i 0 −i
0 i 0



Sz =×
1 0 0

0 0 0
0 0 −1


S2 = 2×I

20 Lecture 20

Identical Particles
ψ(⃗r1, s1, r⃗2, s2), ψ(⃗r2, s2, r⃗1, s1)

Ĥ = T̂k + V̂e x (⃗r1)V̂e x (⃗r2)+ V̂i nt (|⃗r1 − r⃗|, |s1 − s2|)
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Doing a permutations on two identical particle does not change the state of our quantum sys-
tems, thus we introduce the permutation operator:

P̂12 = P̂21 =⇒ ψ(⃗r1, s1, r⃗2, s2) = P̂12ψ(⃗r2, s2, r⃗1, s1).

Since P̂ 2 = Î , we can conclude that its eigenvalues are ±1.
We conclude that ψ(⃗r1, s1, r⃗2, s2) =±ψ(⃗r2, s2, r⃗1, s1).
We now impose that changing the labels of the wave function representing a state, doesn’t change
its energy, thus:

Ĥ
∣∣ψ〉= E

∣∣ψ〉
=⇒ ĤP̂

∣∣ψ(x1, x2
〉= EP̂

∣∣ψ(x2, x1
〉= P̂ Ĥ

∣∣ψ(x1, x2)
〉

=⇒ [Ĥ , P̂ ] = 0

From the Ehrenfest Theorem, we can conclude that If the system starts out in an eigenstate of P̂
symmetric or antisymmetric, it will stay that way forever.

Particle with eigenvalue −1 are the so called Fermions, antisymmetric particles, while particle
with eigenvalue 1 are the so called Bosons, which are symmetric particles.
Let’s now consider two independent particle, whose wave function is the product of the wave
functions:

Ĥψ(⃗r1, s1, r⃗2, s2) = [
(T̂k1 + V̂1)+ (T̂k2 + V̂2)

]
ψ(⃗r1, s1)ψ(⃗r2, s2) = ET OTψ1 (⃗r1, s1)ψ2 (⃗r2, s2)

=⇒
{

T̂k1 + V̂1 = E1ψ(⃗r1, s1)

T̂k2 + V̂2 = E2ψ(⃗r2, s2)

Thus we get that ET OT = E1 +E2.
Now we will deduce the the Pauli Exclusion Principle, for two non interacting identical fermions
in the ground state 0, with same spin s = s1 = s2 we get:

ψ=ψ0 (⃗r1, s, r⃗2, s) =ψ0 (⃗r1, s)ψ0 (⃗r2, s) =−ψ0 (⃗r2, s, r⃗1, s) =−ψ0 (⃗r2, s)ψ0 (⃗r1, s) = 0

Our framework is a two dimensional Hilbert space:{
ψ(⃗r1) |s1〉1

ψ(⃗r2) |s2〉2
=⇒ ψ(⃗r1) |s1〉1ψ(⃗r2) |s2〉2

The product of the two functions satisfies the Schrodinger equation, but we must also impose to
have an antisymmetric function. Thus:

f (x, y) = g (x, y)− g (y, x) =− f (y, x)

Since this is a linear combination of solutions to the Schrodinger Equation, it is still a solution,
with the enforced constraint of being antisymmetric.

1p
2

[
ψ(⃗r1) |s1〉1ψ(⃗r2) |s2〉2 −ψ(⃗r2) |s2〉1ψ(⃗r1) |s1〉2

]= 1p
2
ψ(⃗r1)ψ(⃗r2)

[|s1〉1 |s2〉2 −|s2〉2 |s1〉1
]=⋆

If s1 = s2 =⇒ ⋆= 0.
We have have tried to obtain an antisymmetric solution to the Schrodinger Equation, by a linear
combination of a solution, obtaining a null function which is not acceptable since it is not nor-
malizable.
Let’s consider Helium, which has two electrons:
|s1 − s2| ≤ ST OT ≤ |s1 + s2| =⇒ 0 ≤ ST OT ≤ 1.
In the ground state, there are two electrons in the same orbitals, so for the Pauli Exclusion Princi-
ple they must have opposite spin. We have that:
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• S2
T OT |0〉 = 0 for the ground singlet state.

• S2
T OT |1〉 = × ·1 · (1+1) |1〉 for the triplet state.

We can now state the Pauli Exclusion Principle: Two electrons can’t have the same state and same
spin.

21 Lecture 21

The objective is to find a function for the fermions which is solution to the Schrodinger equation,
and that has also the correct parity.

ψ1 (⃗r1, s1) = 1p
v

e i k⃗1 r⃗1 |s1〉1

ψ2 (⃗r2, s2) = 1p
v

e i k⃗2 r⃗2 |s2〉2

We are considering two non interacting particles:

ψ(⃗r1, s1, r⃗2, s2) = 1p
2v

(
e i k⃗1 r⃗1 e i k⃗2 r⃗2 |s1〉1 |s2〉2 ±e i k⃗1 r⃗2 e i k⃗2 r⃗1 |s2〉1 |s1〉2

)
ψ∗ (⃗r1, s1, r⃗2, s2) = 1p

2v

(
e−i k⃗1 r⃗1 e−i k⃗2 r⃗2 〈s1|1 〈s2|2 ±e−i k⃗1 r⃗2 e−i k⃗2 r⃗1 〈s2|1 〈s1|2

)

|ψ(⃗r1, s1, r⃗2, s2)|2 = 1

2v2

[
2±e−i k⃗1 r⃗1 e−i k⃗2 r⃗2 e i k⃗1 r⃗2 e i k⃗2 r⃗1 〈s1|1 |s2〉1 〈s2|2 |s1〉2±

±e−i k⃗1 r⃗2 e−i k⃗2 r⃗1 e i k⃗1 r⃗1 e i k⃗2 r⃗2 〈s2|1 |s1〉1 〈s1|2 |s2〉2

)
If s1 = s2 we do the calculations, we get that:

|ψ(⃗r1, s1, r⃗2, s2)|2 = 1

2v2

[
2±e−i k⃗1 r⃗1 e−i k⃗2 r⃗2 e i k⃗1 r⃗2 e i k⃗2 r⃗1 ±e−i k⃗1 r⃗2 e−i k⃗2 r⃗1 e i k⃗1 r⃗1 e i k⃗2 r⃗2

]

|ψ(⃗r1, s, r⃗2, s)|2 = 1

2v2

[
2±e i k⃗1 (⃗r2−r⃗1)e i k⃗2 (⃗r1−r⃗2) ±e−i k⃗1 (⃗r2−r⃗1)e−i k⃗2 (⃗r1−r⃗2)

]
=⇒ |ψ(⃗r1, s, r⃗2, s)|2 = 1

v2

(
1± cos

(
(⃗k1 − k⃗2) · (⃗r1 − r⃗2)

))
If instead we have that s1 = s =−s2, we get:

|ψ(⃗r1, s, r⃗2,−s)|2 = 1

2v2

[
2±0±0

]
= 1

v2

In one dimension, for a same spin system, and introducing as a coordinate for the difference of
the wave vector, we can write that:

|ψ|2 = 1

v2

(
1+ cos

(
k(x1 −x2)

))
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Fermions
Bosons

The probability density for fermions has a node at (x1 − x2) = 0, which means that fermions can-
not occupy the same position, consistent with the Pauli exclusion principle. On the other hand,
the probability density for bosons is maximum at (x1−x2) = 0, indicating that bosons can occupy
the same position.

Entanglement

Φ± = 1p
2

(
ψ1 (⃗(r )1) |↑〉ψ2 (⃗r2) |↑〉±ψ1 (⃗r1) |↓〉ψ2 (⃗r2) |↓〉

)
Φ±′ = 1p

2

(
ψ′

1 (⃗r1) |↑〉ψ′
2 (⃗r2) |↓〉±ψ′

1 (⃗r1) |↓〉ψ′
2 (⃗r2) |↑〉

)
Entangled state means that you know some properties of the system, but not about its compo-
nents.

22 Lecture 22

The EPR paradox is a thought experiment that challenges the completeness and locality of quan-
tum mechanics. It was proposed by Albert Einstein, Boris Podolsky and Nathan Rosen in 1935.
The paradox involves two particles that are entangled with each other, meaning that their quan-
tum states are correlated even when they are separated by a large distance. According to quantum
mechanics, each particle does not have a definite value for any observable (such as position or
momentum) until it is measured. Instead, it exists in a superposition of possible values, with
some probability for each outcome.

The paradox arises when one of the particles is measured by an observer, say Alice. This mea-
surement collapses the superposition and reveals a definite value for the observable. But at the
same time, it also determines the value of the same observable for the other particle, which can
be measured by another observer, say Bob. This means that Bob can predict with certainty the
outcome of his measurement, without disturbing his particle in any way.

Einstein, Podolsky and Rosen argued that this implies that there must be some hidden variables
that determine the values of the observables for both particles before they are measured. These
hidden variables would provide a more complete description of reality than quantum mechan-
ics, which they considered incomplete. They also invoked a principle of locality, which states that
no physical influence can travel faster than light. They reasoned that if there are no hidden vari-
ables, then quantum mechanics would violate locality, because the measurement by Alice would
instantaneously affect the particle measured by Bob, at a speed faster than light.
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The EPR paradox has important implications for the interpretation of quantum mechanics and
the nature of reality. It sparked a long debate between Einstein and Niels Bohr, who defended
the Copenhagen interpretation of quantum mechanics and rejected the idea of hidden vari-
ables. It also inspired various experiments to test whether quantum mechanics violates locality
or not. Following experiments have confirmed that the Copenhagen Interpretation was correct
and ruled out certain types of hidden variables.

The experiments ruled out the assumption of local-realism by Albert Einstein.
Realism: the value of an observable is not defined by measurement. The act of observation is not
defining the reality, the result is predefined a-priory, and only discovered after the observation.
Locality: an object is directly influenced only by its immediate surroundings.

Let’s define the following wave function.

ψ− = 1p
2

(∣∣↑A
Z ↓B

Z

〉− ∣∣↓A
Z ↑B

Z

〉)
We define a correlation function, where a,b identify two axis:

C (a,b)≜
S A

a SB
b

h2s2

Without losing generality, we can assume the a-axis to be equal to the z-axis, a = z.

〈S A
a SB

b 〉 =
〈
ψ−∣∣ Ŝ A

a ŜB
b

∣∣ψ−〉= 1

2

[〈↑A
Z ↓B

Z

∣∣ Ŝ A
z ŜB

b

∣∣↑A
Z ↓B

Z

〉+〈↓A
Z ↑B

Z

∣∣ Ŝ A
z ŜB

b

∣∣↓A
Z ↑B

Z

〉−
−(((((((((〈↑A

Z ↓B
Z

∣∣ Ŝ A
z ŜB

b

∣∣↓A
Z ↑B

Z

〉−(((((((((〈↓A
Z ↑B

Z

∣∣ Ŝ A
z ŜB

b

∣∣↑A
Z ↓B

Z

〉]= 1

2

[
×s

〈↓B
Z

∣∣ ŜB
b

∣∣↓B
Z

〉−×s
〈↑B

Z

∣∣ ŜB
b

∣∣↑B
Z

〉
] =

1

2

[
−×s

〈↑B
Z

∣∣ ŜB
b

∣∣↑B
Z

〉−×s
〈↑B

Z

∣∣ ŜB
b

∣∣↑B
Z

〉
] =−×s

〈↑B
Z

∣∣ ŜB
b

∣∣↑B
Z

〉=−×s
〈↑B

Z

∣∣ ŜB
z

∣∣↑B
Z

〉
cosθZ

1. Write the expectation value of the product of spin operators Ŝ A
a and ŜB

b for two spin-1/2
particles A and B in the singlet state

∣∣ψ−〉
, which is an entangled state of opposite spins

along any direction.

2. Expand the singlet state in terms of the eigenstates of Ŝ A
z and ŜB

z , which are
∣∣↑A

Z ↓B
Z

〉
and∣∣↓A

Z ↑B
Z

〉
, with eigenvalues ±×/2 respectively. This is done by using the identity∣∣ψ−〉= 1p

2

(∣∣↑A
Z ↓B

Z

〉− ∣∣↓A
Z ↑B

Z

〉)
3. Apply the spin operators to the eigenstates and use the fact that they are diagonal in this

basis, meaning that they only give non-zero results when acting on the same state. This
allows us to cancel out two terms that involve cross-terms like

〈↑A
Z ↓B

Z

∣∣ Ŝ A
z ŜB

b

∣∣↓A
Z ↑B

Z

〉
, which

are zero because
〈↑A

Z ↓B
Z

∣∣ and
∣∣↓A

Z ↑B
Z

〉
are orthogonal. We also use the fact that

Ŝ A
z

∣∣↑A
Z

〉= ×
2

∣∣↑A
Z

〉
and

Ŝ A
z

∣∣↓A
Z

〉=−×
2

∣∣↓A
Z

〉
4. Simplify the remaining terms by noting that we only need to consider the action of ŜB

b on
the states of particle B, since the states of particle A are already factored out. We also use
the fact that

〈↑Z | Ŝb |↑Z 〉 = 〈↑Z | Ŝz |↑Z 〉cosθb
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where θb is the angle between the z-axis and the direction of Ŝb . This follows from the
rotation properties of spin operators and spinors. Similarly, we have

〈↓Z | Ŝb |↓Z 〉 =−〈↑Z | Ŝb |↑Z 〉

5. The final step is to combine the terms and obtain the final result, which is

〈S A
a SB

b 〉 =−×s 〈↑Z | Ŝb |↑Z 〉cosθb

where s = 1/2 is the spin quantum number of each particle. This expression shows that the
expectation value of the product of spin operators depends on the relative orientation of
Ŝa and Ŝb , and that it is always negative for the singlet state, meaning that the spins are
anti-correlated.

The kets
∣∣↑A

Z ↓B
Z

〉
, are eigenstate of Ŝ A

z , so they get multiplied by a constant, and are orthogonal to
the bra operating on them, so we can cross out the two terms. Remember again that multiplying
by −1 is the same of reverting the spin.

〈S A
a SB

b 〉 =−×s
〈↑B

Z

∣∣ ŜB
z

∣∣↑B
Z

〉
cosθZ =−×2s2cosθZ

=⇒ C (a,b) = 〈S A
a SB

b 〉
×2s2 = −×2s2cosθZ

×2s2 =−cosθZ

Now we will try to apply realism and locality assumptions:

〈S A
a SB

b 〉 = ×2s2[P (S A
a = SB

b )−P (S A
a =−SB

b )
]=⋆

Since P (S A
a = SB

b )+P (S A
a =−SB

b ) = 1

=⇒ 〈S A
a = SB

b 〉 =⋆=×2s2[1−2P (S A
a =−SB

b )] =⇒ C (a,b) = 1−2P (S A
a = SB

b )

Now we will consider the measurements made by Alice, introducing another axis c. We define the
following probability, and the correlation function as follows:

P (S A
a = S A

b )+P (S A
a = S A

c )+P (S A
b = S A

c ) ≥ 1

Due to the locality argument, and the independence of the measurements made by Alice and
Bob, we must conclude that:

P (S A
a =−SB

b ) = P (S A
a = S A

b )

P (S A
a =−SB

c ) = P (S A
a = S A

c )

P (S A
b =−SB

c ) = P (S A
b = S A

c )

C (a,b) = 1−2P (S A
a =−SB

b )

C (a,c) = 1−2P (S A
a =−SB

c )

C (b,c) = 1−2P (S A
b =−SB

c )

Bell Inequality

C (a,b)+C (a,c)+C (b,c) = 3−2
[
P (S A

a =−SB
b )+P (S A

a =−SB
c )+P (S A

b =−SB
c )

]=
= 3−2

[
P (S A

a = S A
b )+P (S A

a = S A
c )+P (S A

b = S A
c )

]≤ 1

Changing the sign of one the detectors/axis, makes us measure the opposite correlation function.
We start by considering the opposite of the c axis.

C (a,b)+C (a,−c)+C (b,−c) ≤ 1
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C (a,b)−C (a,c)−C (b,+c) ≤ 1

C (a,b)−C (a,c) ≤ 1+C (b,c)

Now we will proceed by inverting the a axis:

C (−a,b)−C (−a,c) ≤ 1+C (b,c)

−C (a,b)+C (a,c) ≤ 1+C (b,c)

C (a,b)−C (a,c) ≥−(
1+C (b,c)

)
=⇒ |C (a,b)−C (a,c)| ≤ 1+C (b,c)

Let θab = π
2 ,θac = π

4 ,θbc = π
4 :

C (a,b) =−cos(θab)

C (a,b) = 0

C (a,c) =−
p

2

2

C (a,c) =−
p

2

2

This choice of angles, obviously violate the Bell Inequality.

Experimental Bell Tests

The first Bell test experiment was performed in 1972 by John Clauser and Stuart Freedman. It
was designed to test whether quantum mechanics violates local realism, which is the assump-
tion that physical reality is independent of observation and that no influence can travel faster
than light. The experiment involved measuring the polarization of pairs of photons that were
entangled, meaning that their quantum states were correlated even when they were separated in
space. The experiment used a device called a polarizer to measure the polarization of each pho-
ton along a chosen direction. The experimenters varied the directions of the polarizers randomly
and compared the results of the measurements. They found that the correlations between the
photons were stronger than what any local hidden variable theory could explain, thus violating
Bell’s inequality. This was the first experimental evidence that quantum mechanics predicts non-
local phenomena that cannot be accounted for by classical physics. The modification by Alain
Aspect in his Bell test experiment was to use variable polarizers that could be changed randomly
and rapidly during the measurements. This was done to close the locality loophole, which is the
possibility that the entangled particles could somehow influence the settings of the polarizers
and thus create a false impression of nonlocality. Aspect used an acousto-optic modulator to
switch the orientation of the polarizers at a frequency of 50 kHz, which was much faster than the
time it took for light to travel between the two measurement stations. This ensured that the polar-
izer settings were truly independent and unpredictable, and that no signal could travel from one
station to another in time to affect the outcome. Aspect’s experiment confirmed the violation of
Bell’s inequality with high statistical significance, and ruled out any local hidden variable theory.

Hidden Variables

The Hidden variable assumption is that S A
a = S A

a (ξ),S A
b = S A

b (ξ),S A
c = S A

c (ξ) and that SB
a =−S A

a (ξ),SB
b =

−S A
b (ξ),SB

c = −S A
c (ξ), where ξ is the hidden variable, which explains the measurement results "a

priori".

〈S A
a SB

b 〉 =
∫

f (ξ)S A
a (ξ)SB

b (ξ)dξ=−
∫

f (ξ)S A
a (ξ)S A

b (ξ)dξ
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〈S A
a SB

b 〉−〈S A
a SB

c 〉 =−∫
f (ξ)

[
S A

a (ξ)S A
b (ξ)−S A

a (ξ)S A
c (ξ)

]
dξ=

=−∫
f (ξ)S A

a (ξ)S A
b (ξ)

[
1− 1

×2s2 S A
b (ξ)S A

c (ξ)
]

dξ

Knowing that
(
S A

a

)2=×2s2.∣∣〈S A
a SB

b 〉−〈S A
a SB

c 〉
∣∣≤ ∫

f (ξ)
∣∣S A

a (ξ)S A
b (ξ)

∣∣[1− 1
×2s2 S A

b (ξ)S A
c (ξ)

]
dξ≤

≤×2s2
∫

f (ξ)
[

1− 1
×2s2 S A

b (ξ)S A
c (ξ)

]
dξ

The term 1− 1
×2s2 S A

b (ξ)S A
c (ξ) is outside the absolute value because it represents an adjustment

factor applied to the absolute value of S A
a (ξ)SB

b (ξ). This adjustment factor accounts for the rela-

tionship between the measurements S A
b (ξ) and S A

c (ξ). To determine if we can assume this term is
always positive, let’s analyze the expression:

1− 1

×2s2 S A
b (ξ)S A

c (ξ)

Recall that (S A
a )2 = ×2s2, which means that S A

a (ξ) is limited in magnitude by ×s. Similarly, S A
b (ξ)

and S A
c (ξ) will also be limited in magnitude by ×s. Now, consider the product S A

b (ξ)S A
c (ξ). Given

that both factors are limited in magnitude by ×s, their product will be limited in magnitude by
(×s)2 = ×2s2 (CS-Inequality). When we divide the product by ×2s2, the result will be limited in
magnitude by 1:

1

×2s2 S A
b (ξ)S A

c (ξ) ≤ 1

Finally, subtracting this term from 1, we get:

1− 1

×2s2 S A
b (ξ)S A

c (ξ) ≥ 0

Since the term is always non-negative, it does not affect the sign of the absolute value of S A
a (ξ)SB

b (ξ).

Therefore, we can safely assume that the term 1− 1
×2s2 S A

b (ξ)S A
c (ξ) is always non-negative, and it is

appropriate to place it outside the absolute value.

Since f (ξ) is a probability density function, its integral over the whole space is equal to 1.∣∣〈S A
a SB

b 〉−〈S A
a SB

c 〉
∣∣≤×2s2 −〈S A

b S A
c 〉 = ×2s2 +〈S A

b SB
c 〉

|C (a,b)−C (a,c)| ≤ 1+C (b,c)

There are not hidden variables. Quantities are defined by measurements.
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